98 resultados para Manure Application
Resumo:
Soils of the coastal plains of Rio Grande do Sul, Brazil, are affected by salinization, which can hamper the establishment and development of crops in general, including rice. The application of high doses of KCl may aggravate the crop damage, due to the high saline content of this fertilizer. This study aimed to evaluate the effect of K fertilizer management on some properties of rice plant, grown in soils with different sodicity levels, and determine which attribute is best related to yield. The field study was conducted in four Albaqualfs with exchangeable Na percentages of 5.6, 9.0, 21 and 32 %. The management of KCl fertilizer consisted of the application of 90 kg ha-1 K2O broadcast, 90 kg ha-1 K2O in the row and 45 kg ha-1 K2O in the row + 45 kg ha-1 K2O at panicle initiation (PI). Plant density, dry matter evolution, height, SPAD (Soil Plant Analysis Development value indicating relative chlorophyll contents) index, tiller mass, 1,000-grain weight, panicle length and grain yield were evaluated. The plant density was damaged by application of K fertilizer in the row, especially at full dose (90 kg ha-1), at three sodicity levels, resulting in loss in biomass accumulation in later stages, affecting the crop yield, even at the lowest level of soil sodicity (5.6 %). All properties were correlated with yield; the highest positive correlation was found with plant density and shoot dry matter at full flowering, and a negative correlation with panicle length.
Resumo:
Inadequate usage can degrade natural resources, particularly soils. More attention has been paid to practices aiming at the recovery of degraded soils in the last years, e.g, the use of organic fertilizers, liming and introduction of species adapted to adverse conditions. The purpose of this study was therefore to investigate the recovery of physical properties of a Red Latosol (Oxisol) degraded by the construction of a hydroelectric power station. In the study area, a soil layer about 8m thick had been withdrawn by heavy machines leading not only to soil compaction, but resulting in high-degree degradation. The experiment was arranged in a completely randomized design with nine treatments and four replications. The treatments consisted of: 1- soil mobilization by tilling (to ensure the effect of mechanical mobilization in all treatments) without planting, but growth of spontaneous vegetation; 2- Black velvet bean (Stizolobium aterrimum Piper & Tracy); 3- Pigeonpea (Cajanus cajan (L.) DC); 4- Liming + black velvet bean; 5-Liming + pigeonpea until 1994, when replaced by jack bean (Canavalia ensiformis); 6- Liming + gypsum + black velvet bean; 7- Liming + gypsum + pigeonpea until 1994, when replaced by jack bean; and two controls as reference: 8- Native Cerrado vegetation and 9- bare soil (no tilling and no planting), left under natural conditions and in this situation, without spontaneous vegetation. In treatments 1 through 7, the soil was tilled. Treatments were installed in 1992 and left unmanaged for seven years, until brachiaria (Brachiaria decumbens) was planted in all plots in 1999. Seventeen years after implantation, the properties soil macroporosity, microporosity, total porosity, bulk density and aggregate stability were assessed in the previously described treatments in the soil layers 0.00-0.10; 0.10-0.20 and 0.20-0.40 m, and soil Penetration Resistance and soil moisture in 0.00-0.15 and 0.15-0.30 m. The plants were evaluated for: brachiaria dry matter and spontaneous growth of native tree species in the plots as of 2006. Results were analyzed by variance analysis and Tukey´s test at 5 % for mean comparison. In all treatments, except for the bare soil (no recovery measures), ongoing recovery of the degraded soil physical properties was observed. Macroporosity, soil bulk density and total porosity were good soil quality indicators. The occurrence of spontaneous native species indicated the soil recovery process. The best adapted species was Machaerium acutifolium Vogel, with the largest number of plants and most advanced development; the dry matter production of B. decumbens in recovering soil was similar to normal conditions, evidencing soil recovery.
Resumo:
The application of organic wastes to agricultural soils is not risk-free and can affect soil invertebrates. Ecotoxicological tests based on the behavioral avoidance of earthworms and springtails were performed to evaluate effects of different fertilization strategies on soil quality and habitat function for soil organisms. These tests were performed in soils treated with: i) slurry and chemical fertilizers, according to the conventional fertilization management of the region, ii) conventional fertilization + sludge and iii) unfertilized reference soil. Both fertilization strategies contributed to soil acidity mitigation and caused no increase in soil heavy metal content. Avoidance test results showed no negative effects of these strategies on soil organisms, compared with the reference soil. However, results of the two fertilization managements differed: Springtails did not avoid soils fertilized with dairy sludge in any of the tested combinations. Earthworms avoided soils treated with sludge as of May 2004 (DS1), when compared with conventional fertilization. Possibly, the behavioral avoidance of earthworms is more sensitive to soil properties (other than texture, organic matter and heavy metal content) than springtails
Resumo:
Gypsum does not affect the soil negative charges and maintains sulfate in the soil solution, making it one of the cheapest products to increase Ca activity in soil solution, especially in the deeper soil layers. Higher Ca levels in the soil solution can increase the uptake of this nutrient by apple trees, reducing the risk of physiological disorders caused by Ca deficiency. This study assessed the effect of long-term gypsum application on some soil properties and on the chemical composition of leaves and fruits of an apple cultivar susceptible to fruit disorders associated with low Ca. The experiment was conducted in São Joaquim, in the South of Brazil, from 2001 to 2009. Gypsum rates of 0, 1.0, 2.0 and 3.0 t ha-1 were annually broadcast over the soil surface, without incorporation, in an apple orchard with cultivar ´Catarina´, planted in 1997. Gypsum application over eight consecutive years had no effect on soil exchangeable K and Al to a depth of 80 cm, but increased exchangeable Ca in the sampled layers (0-10, 10-20, 40-60 and 60-80 cm), while exchangeable Mg decreased only in the surface layer (0-20 cm). Gypsum did not affect the concentration of any nutrient in the fruits, including Ca. The same was verified in the leaves, except for Mg which decreased with increased gypsum rate. Despite increasing the availability of Ca in the soil profile to a depth of 80 cm, gypsum was not effective to increase the Ca content in leaves and fruits of an apple cultivar susceptible to Ca deficiency grown in an appropriately limed soil.
Resumo:
Nitrogen is the most important nutrient for rice (Oryza sativa L) yields. This study aimed to evaluate the response of upland rice cultivars to N rate and application times in a randomized block design, in subdivided plots with four replications. The studied factors were five rice cultivars (BRS MG Curinga, BRS Monarca, BRS Pepita, BRS Primavera, and BRS Sertaneja), three application times (100 % at planting, 50 % at planting - 50 % at tillering and 100 % at tillering) and four N rates (0, 50, 100, and 150 kg ha-1). All cultivars responded to increased rates and different times of N application, especially BRS Primavera and BRS Sertaneja, which were the most productive when 50 % N rates were applied at sowing and 50 % at tillering. The response of cultivar BRS Monarca to N fertilization was best when 100 % of the fertilizer was applied at tillering.
Resumo:
In Brazil extensive areas are covered with pine forests, planted for pulp and paper production. This industry generates solid alkaline waste, such as dregs. The application of this dregs to forest soils is an alternative for soil acidity correction and plant nutrient supply, as well as a solution for its proper disposal. The purpose of this study was to compare the residual effect of surface application of dregs and dolomitic lime on (a) changes in the physical and chemical properties of an acidic soil and (b) pine tree development. The experiment was carried out in 2004 in Bocaina do Sul, Santa Catarina, consisting of the application of increasing dreg and lime rates to a Pinus taeda L. production area, on a Humic Cambisol, in a randomized block design with four replications and 10 x 10 m plots. The treatments consisted of levels of soil acidity amendments corresponding to the recommendations by the SMP method to reach pH 5.5 in the 0-20 cm layer, as follows: no soil amendment; dregs at 5.08 (1/4 SMP), 10.15 (1/2 SMP) and 20.3 Mg ha-1 (1 SMP); and lime at 8.35 (1/2 SMP) and 16.7 Mg ha-1 (1 SMP). Soil layers were sampled in 2010 for analyses of soil chemical and physical properties. The diameter at breast height of the 6.5 year old pine trees was also evaluated. Surface application of dregs improved soil chemical fertility by reducing acidity and increasing base saturation, similar to liming, especially in surface layers. Dregs, comparable to lime, reduced the degree of clay flocculation, but did not affect the soil physical quality. There was no effect of the amendments on increase in pine tree diameter. Thus, the alternative to raise the pH in forest soils to 5.5 with dregs is promising for the forestry sector with a view to dispose of the waste and increase soil fertility.
Resumo:
Silicon (Si) is beneficial to plants in several aspects, but there are doubts about the effectiveness of leaf application. The purpose of this work was to evaluate the effects of Si, applied in a newly developed stabilized silicic acid form to the leaf, on nutrition and yield of irrigated white oat and wheat. Two experiments were performed (one per crop) in winter 2008, in Botucatu-SP, Brazil. A completely randomized block design with 14 replications was used. Treatments consisted of a control (without Si application) and Si leaf spraying, at a rate of 2.0 L ha-1 of the commercial product containing 0.8 % soluble Si. Silicon rate was divided in three parts, i.e. applications at tillering, floral differentiation and booting stages. Silicon leaf application increased N, P, K, and Si concentrations in white oat flag leaf, resulting in higher shoot dry matter, number of panicles per m², number of grains per panicle and grain yield increase of 34 %. In wheat, Si leaf application increased K and Si concentrations, shoot dry matter and number of spikes per m², resulting in a grain yield increase of 26.9 %.
Resumo:
The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil). The treatments consisted of: control (without nutrient application) and application of pig slurry (PS), pig deep-litter (PL), cattle slurry (CS), and mineral fertilizers (NPK). The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching) and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER). In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient amount, but rather with the solution amount leached in the soil profile.
Resumo:
The application of organic residues to the soil can increase soluble organic carbon (SOC) and affect the pH and electrolytic conductivity (EC) of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC), water-extractable organic carbon (WEOC), and water-extractable inorganic carbon (WEIC) in soil treated with manure (chicken, swine, and quail), sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4), organic carbon (OC- KH2PO4), and inorganic C (IC- KH2PO4) extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol) sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.
Resumo:
Pig slurry (PS) represents an important nutrient source for plants and using it as fertilizer makes greater nutrient cycling in the environment possible. The aim of this study was to assess how PS application over a period of years can affect grain yield, dry matter production and nutrient accumulation in commercial grain and cover crops. The experiment was carried out in an experimental area of the Universidade Federal de Santa Maria, in Santa Maria, RS, Brazil, from May 2000 to January 2008. In this period, 19 grain and cover crops were grown with PS application before sowing, at rates of 0, 20, 40 and 80 m³ ha-1. The highest PS rate led to an increase in nutrient availability over the years, notably of P, but also of nutrients that are potentially toxic to plants, especially Cu and Zn. The apparent recovery of nutrients by commercial grain and cover crops decreased with the increasing number of PS applications to the soil. Accumulated dry matter production of the crops and maize grain yield were highest at an annual application rate of 80 m³ ha-1 PS. However, common bean yield increased up to 20 m³ ha-1 PS, showing that the crop to be grown should be considered to define the application rate.
Resumo:
A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea treatments: polymer-coated urea at rates of 45, 67.5 and 90 kg ha-1 N and one control treatment (no N), in randomized blocks with four replications. Nitrogen application had a favorable effect on N concentrations in leaves and grains, Soil Plant Analysis Development (SPAD) chlorophyll meter readings and on grain yield, where as coated urea had no effect on the volatilization rates, SPAD readings and N leaf and grain concentration, nor on grain yield in comparison to conventional fertilization.
Resumo:
The use of urban waste compost as nutrient source in agriculture has been a subject of investigation in Brazil and elsewhere, although the effects on soil physical and chemical properties and processes are still poorly known. The aim of this study was to evaluate the effect of application of urban waste compost and mineral fertilizer on soil aggregate stability and organic carbon and total nitrogen content of a Rhodic Hapludox under no-tillage in the northwestern region of Rio Grande do Sul, Brazil, in the 2009/2010 and 2010/2011 growing seasons. The experiment was arranged in a 2 × 6 (seasons and fertilization) factorial in a randomized complete block design with four replications. The factor time consisted of two growing seasons (sunflower in 2009/10 and maize in 2010/11) and the factor fertilization of five rates of urban waste compost (0, 25, 50, 75 and 100 m³ ha-1), and mineral fertilizer. Soil samples were collected from the 0.0-0.10 m layer to determine aggregate stability (mean weight and geometric diameter), soil organic carbon (SOC) and total nitrogen (TN). Rates of up to 75 m³ ha-1 of urban waste compost, after two years of application to no-tillage maize and sunflower, improved aggregation compared to mineral fertilization in a Rhodic Hapludox. After the second crop, the SOC and TN contents increased linearly with the levels of urban waste compost.
Resumo:
Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control), 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox) soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity) and chemical properties (organic matter, pH, extractable P, and exchangeable K) were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.
Resumo:
Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol), as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2-) up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE) rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.
Resumo:
Phosphate release kinetics from manures are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Although information on the bioavailability and chemical composition of P present in manure used as fertilizer are important to understand its dynamics in the soil, such studies are still scarce. Therefore, P extraction was evaluated in this study by sequential chemical fractionation, desorption with anion-cation exchange resin and 31P nuclear magnetic resonance (31P-NMR) spectroscopy to assess the P forms in three different dry manure types (i.e. poultry, cattle and swine manure). All three methods showed that the P forms in poultry, cattle and swine dry manures are mostly inorganic and highly bioavailable. The estimated P pools showed that organic and recalcitrant P forms were negligible and highly dependent on the Ca:P ratio in manures. The results obtained here showed that the extraction of P with these three different methods allows a better understanding and complete characterization of the P pools present in the manures.