85 resultados para MULTIPLE TRANSLATIONAL CONTAINMENT
Resumo:
Assuming that the IS6110-restriction fragment length polymorphism (RFLP) changes at a constant rate of 3.2 years, this methodology was applied to demonstrate, for the first time, variant patterns of Mycobacterium tuberculosis (MTB) in multiple isolates obtained at short time intervals from sputum and blood of an HIV+ patient with multiple admissions to the Emergency Room and to the multidrug-resistant tuberculosis (MDR-TB) Reference Center of a secondary-care hospital in Rio de Janeiro, Brazil. In sputum, the IS6110-RFLP appeared in isolates with two variant patterns with 10 and 13 IS6110 copies. However, blood presented only the pattern corresponding to 10 copies, suggesting compartmentalization. With regard to the exact match of 10 of 13 bands, this may be a subpopulation with the same clonal origin and this may be related to the IS6110 transposition. A susceptibility test demonstrated an MDR profile (INH R, RIF R, SM R, and EMB R), with the sputum isolate also exhibiting EMB S (R = resistant; S = sensitive). A gene mutation confirmed resistance only to streptomycin. There was agreement between the results of the phenotypic test and the clinical response to MDR-TB treatment, suggesting serious implications with regard to treatment administration based exclusively on molecular methods, and calling attention to the fact that more effective control strategies against the emergence of MDR strains must be implemented by the TB control program to prevent transmission of MDR-MTB strains at health facilities in areas highly endemic for TB.
Resumo:
Dengue virus (DV)-induced changes in the host cell protein synthesis machinery are not well understood. We investigated the transcriptional changes related to initiation of protein synthesis. The human hepatoma cell line, HepG2, was infected with DV serotype 2 for 1 h at a multiplicity of infection of one. RNA was extracted after 6, 24 and 48 h. Microarray results showed that 36.5% of the translation factors related to initiation of protein synthesis had significant differential expression (Z-score ≥ ±2.0). Confirmation was obtained by quantitative real-time reverse transcription-PCR. Of the genes involved in the activation of mRNA for cap-dependent translation (eIF4 factors), eIF4A, eIF4G1 and eIF4B were up-regulated while the negative regulator of translation eIF4E-BP3 was down-regulated. This activation was transient since at 24 h post-infection levels were not significantly different from control cells. However, at 48 h post-infection, eIF4A, eIF4E, eIF4G1, eIF4G3, eIF4B, and eIF4E-BP3 were down-regulated, suggesting that cap-dependent translation could be inhibited during the progression of infection. To test this hypothesis, phosphorylation of p70S6K and 4E-BP1, which induce cap-dependent protein synthesis, was assayed. Both proteins remained phosphorylated when assayed at 6 h after infection, while infection induced dephosphorylation of p70S6K and 4E-BP1 at 24 and 48 h of infection, respectively. Taken together, these results provide biological evidence suggesting that in HepG2 cells DV sustains activation of the cap-dependent machinery at early stages of infection, but progression of infection switches protein synthesis to a cap-independent process.
Resumo:
The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.
Resumo:
The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.
Resumo:
Eighty-six newly diagnosed multiple myeloma (MM) patients from a public hospital of São Paulo (Brazil) were evaluated by cIg-FISH for the presence of del(13)(q14), t(4;14)(p16.3;q32) and del(17)(p13). These abnormalities were observed in 46.5, 9.3, and 7.0% of the patients, respectively. In order to identify the possible role of del(13)(q14) in the physiopathology of MM, we investigated the association between this abnormality and the proliferative and apoptotic indexes of plasma cells. When cases demonstrating t(4;14)(p16.3;q32) and del(17)(p13) were excluded from the analysis, we observed a trend towards a positive correlation between the proportion of cells carrying del(13)(q14) and plasma cell proliferation, determined by Ki-67 expression (r = 0.23, P = 0.06). On the other hand, no correlation between the proportion of cells carrying del(13)(q14) and apoptosis, determined by annexin-V staining, was detected (r = 0.05, P = 0.69). In general, patients carrying del(13)(q14) did not have lower survival than patients without del(13)(q14) (P = 0.15), but patients with more than 80% of cells carrying del(13)(q14) showed a lower overall survival (P = 0.033). These results suggest that, when del(13)(q14) is observed in a high proportion of malignant cells, it may have a role in determining MM prognosis. Another finding was a statistically significant lower overall survival of patients with t(4;14)(p16.3;q32) (P = 0.026). In the present study, almost half the patients with t(4;14)(p16.3;q32) died just after diagnosis, before starting treatment. This fact suggests that, in São Paulo, there may be even more patients with this chromosomal abnormality, but they probably die before being diagnosed due to unfavorable socioeconomic conditions. This could explain the low prevalence of this chromosomal abnormality observed in the present study.
Resumo:
This study determined whether clinical salt-sensitive hypertension (cSSHT) results from the interaction between partial arterial baroreceptor impairment and a high-sodium (HNa) diet. In three series (S-I, S-II, S-III), mean arterial pressure (MAP) of conscious male Wistar ChR003 rats was measured once before (pdMAP) and twice after either sham (SHM) or bilateral aortic denervation (AD), following 7 days on a low-sodium (LNa) diet (LNaMAP) and then 21 days on a HNa diet (HNaMAP). The roles of plasma nitric oxide bioavailability (pNOB), renal medullary superoxide anion production (RMSAP), and mRNA expression of NAD(P)H oxidase and superoxide dismutase were also assessed. In SHM (n=11) and AD (n=15) groups of S-I, LNaMAP-pdMAP was 10.5±2.1 vs 23±2.1 mmHg (P<0.001), and the salt-sensitivity index (SSi; HNaMAP−LNaMAP) was 6.0±1.9 vs 12.7±1.9 mmHg (P=0.03), respectively. In the SHM group, all rats were normotensive, and 36% were salt sensitive (SSi≥10 mmHg), whereas in the AD group ∼50% showed cSSHT. A 45% reduction in pNOB (P≤0.004) was observed in both groups in dietary transit. RMSAP increased in the AD group on both diets but more so on the HNa diet (S-II, P<0.03) than on the LNa diet (S-III, P<0.04). MAP modeling in rats without a renal hypertensive genotype indicated that the AD*HNa diet interaction (P=0.008) increases the likelihood of developing cSSHT. Translationally, these findings help to explain why subjects with clinical salt-sensitive normotension may transition to cSSHT.
Resumo:
Physiological evidence indicates that the supraoptic nucleus (SON) is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs) responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane properties of the MNCs themselves and 2) synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO) may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON.
Resumo:
Four cycles of chemotherapy are required to assess responses of multiple myeloma (MM) patients. We investigated whether circulating endothelial progenitor cells (cEPCs) could be a biomarker for predicting patient response in the first cycle of chemotherapy with bortezomib and dexamethasone, so patients might avoid ineffective and costly treatments and reduce exposure to unwanted side effects. We measured cEPCs and stromal cell-derived factor-1α (SDF-1α) in 46 MM patients in the first cycle of treatment with bortezomib and dexamethasone, and investigated clinical relevance based on patient response after four 21-day cycles. The mononuclear cell fraction was analyzed for cEPC by FACS analysis, and SDF-1α was analyzed by ELISA. The study population was divided into 3 groups according to the response to chemotherapy: good responders (n=16), common responders (n=12), and non-responders (n=18). There were no significant differences among these groups at baseline day 1 (P>0.05). cEPC levels decreased slightly at day 21 (8.2±3.3 cEPCs/μL) vs day 1 (8.4±2.9 cEPCs/μL) in good responders (P>0.05). In contrast, cEPC levels increased significantly in the other two groups (P<0.05). SDF-1α changes were closely related to changes in cEPCs. These findings indicate that change in cEPCs at day 21 in the first cycle might be considered a noninvasive biomarker for predicting a later response, and extent of change could help decide whether to continue this costly chemotherapy. cEPCs and the SDF-1α/CXCR4 axis are potential therapeutic targets for improved response and outcomes in MM patients.
Resumo:
HIV infection has a broad spectrum of renal manifestations. This study examined the clinical and histological manifestations of HIV-associated renal disease, and predictors of renal outcomes. Sixty-one (64% male, mean age 45 years) HIV patients were retrospectively evaluated. Clinical presentation and renal histopathology were assessed, as well as CD4 T-cell count and viral load. The predictive value of histological lesion, baseline CD4 cell count and viral load for end-stage renal disease (ESRD) or death were determined using the Cox regression model. The outcomes of chronic kidney disease (CKD) and ESRD or death were evaluated by baseline CD4 cell count. The percent distribution at initial clinical presentation was non-nephrotic proteinuria (54%), acute kidney injury (28%), nephrotic syndrome (23%), and chronic kidney disease (22%). Focal segmental glomerulosclerosis (28%), mainly the collapsing form (HIVAN), acute interstitial nephritis (AIN) (26%), and immune complex-mediated glomerulonephritis (ICGN) (25%) were the predominant renal histology. Baseline CD4 cell count ≥200 cells/mm3 was a protective factor against CKD (hazard ratio=0.997; 95%CI=0.994-0.999; P=0.012). At last follow-up, 64% of patients with baseline CD4 ≥200 cells/mm3 had eGFR >60 mL·min-1·(1.73 m2)-1 compared to the other 35% of patients who presented with CD4 <200 cells/mm3 (log rank=9.043, P=0.003). In conclusion, the main histological lesion of HIV-associated renal disease was HIVAN, followed by AIN and ICGN. These findings reinforce the need to biopsy HIV patients with kidney impairment and/or proteinuria. Baseline CD4 cell count ≥200 cells/mm3 was associated with better renal function after 2 years of follow-up.
Resumo:
Genetic abnormalities are critical prognostic factors for patients diagnosed with multiple myeloma (MM). This retrospective, multicenter study aimed to contribute with the genetic and clinical characterization of MM patients in a country with continental dimensions such as Brazil. Genetic abnormalities were assessed by cIg-fluorescent in situ hybridization (cIg-FISH) in a series of 152 MM patients (median age 55 years, 58.5% men). Overall, genetic abnormalities were detected in 52.7% (80/152) of patients. A 14q32 rearrangement was detected in 33.5% (n=51), including t(11;14), t(4;14) and t(14;16) in 18.4, 14.1, and 1% of cases, respectively. del(13q) was identified in 42.7% (n=65) of patients, of whom 49.2% (32/65) presented a concomitant 14q32 rearrangement. del(17p) had a frequency of 5.2% (n=8). del(13q) was associated with high plasma cell burden (≥50%, P=0.02), and del(17p) with advanced ISS stages (P=0.05) and extramedullary disease (P=0.03). t(4;14) was associated with advanced Durie-Salmon stages (P=0.008), renal insufficiency (P=0.01) and was more common in patients over 60 years old. This study reports similar frequencies of genetic abnormalities to most series worldwide, whereas the t(14;16) and del(17p), two high risk factors for newly diagnosed patients, exhibited lower frequencies. Our results expand the knowledge on the molecular features of MM in Brazil, a country where innovative therapies that could overcome a poor prognosis for some genetic abnormalities are not always available.