104 resultados para MITOCHONDRIAL METABOLISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, hexokinase (HK) is strategically located at the outer membrane of mitochondria bound to the porin protein. The mitochondrial HK is a crucial modulator of apoptosis and reactive oxygen species generation. In plants, these properties related to HK are unknown. In order to better understand the physiological role of non-cytosolic hexokinase (NC-HK) in plants, we developed a purification strategy here described. Crude extract of 400 g of maize roots (230 mg protein) contained a specific activity of 0.042 µmol G6P min-1 mg PTN-1. After solubilization with detergent two fractions were obtained by DEAE column chromatography, NC-HK 1 (specific activity = 3.6 µmol G6P min-1 mg PTN-1 and protein recovered = 0.7 mg) and NC-HK 2. A major purification (yield = 500-fold) was obtained after passage of NC-HK 1 through the hydrophobic phenyl-Sepharose column. The total amount of protein and activity recovered were 0.04 and 18%, respectively. The NC-HK 1 binds to the hydrophobic phenyl-Sepharose matrix, as observed for rat brain HK. Mild chymotrypsin digestion did not affect adsorption of NC-HK 1 to the hydrophobic column as it does for rat HK I. In contrast to mammal mitochondrial HK, glucose-6-phosphate, clotrimazole or thiopental did not dissociate NC-HK from maize (Zea mays) or rice (Oryza sativa) mitochondrial membranes. These data show that the interaction between maize or rice NC-HK to mitochondria differs from that reported in mammals, where the mitochondrial enzyme can be displaced by modulators or pharmacological agents known to interfere with the enzyme binding properties with the mitochondrial porin protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibilityto and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesionto the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways) may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis and atherosclerosis are chronic degenerative diseases which have been considered to be independent and whose common characteristic is increasing incidence with age. At present, growing evidence indicates the existence of a correlation between cardiovascular disease and osteoporosis, irrespective of age. The morbidity and mortality of osteoporosis is mainly related to the occurrence of fractures. Atherosclerosis shows a high rate of morbidity and especially mortality because of its clinical repercussions such as angina pectoris, acute myocardial infarction, stroke, and peripheral vascular insufficiency. Atherosclerotic disease is characterized by the accumulation of lipid material in the arterial wall resulting from autoimmune and inflammatory mechanisms. More than 90% of these fatty plaques undergo calcification. The correlation between osteoporosis and atherosclerosis is being established by studies of the underlying physiopathological mechanisms, which seem to coincide in many biochemical pathways, and of the risk factors for vascular disease, which have also been associated with a higher incidence of low-bone mineral density. In addition, there is evidence indicating an action of antiresorptive drugs on the reduction of cardiovascular risks and the effect of statins, antihypertensives and insulin on bone mass increase. The mechanism of arterial calcification resembles the process of osteogenesis, involving various cells, proteins and cytokines that lead to tissue mineralization. The authors review the factors responsible for atherosclerotic disease that correlate with low-bone mineral density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biostimulating effect of laser radiation has been observed in many areas of Medicine. However, there are still several questions to be answered, among them the importance of light coherence in the stimulatory process. In the present study, we used light-emitting diodes (LED) to promote the stimulation of liver regeneration after partial hepatectomy in rats. Fourteen male Wistar rats weighing 200-250 g were submitted to partial hepatectomy (70%) followed by LED light irradiation (630 nm) of the remaining part of the liver at two doses, i.e., 10 (N = 7) and 140 (N = 7) J/cm². A group irradiated with laser, 590 nm (N = 7, 15 J/cm²) was performed for the study of proliferating cell nuclear antigen-labeling index. Data are reported as mean ± SEM. Statistical comparisons of the groups were performed by analysis of variance for parametric measurements followed by the Bonferroni post-test, with the level of significance set at P < 0.05. Respiratory mitochondrial activity was increased in the irradiated groups (states 3 and 4; P < 0.05), with better results for the group exposed to the lower LED dose (10 J/cm²). The proliferating cell nuclear antigen-labeling index, by immunohistochemical staining, was similar for both LED-exposed groups (P > 0.05) and higher than for the control group (P < 0.05). The cell proliferation index obtained with LED and laser were similar (P > 0.05). In conclusion, the present results suggest that LED irradiation promotes biological stimulatory effects during the early stage of liver regeneration and that LED is as effective as laser light, independent of the coherence, divergence and cromaticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that the free cholesterol (FC) and the cholesteryl ester (CE) moieties of a nanoemulsion with lipidic structure resembling low-density lipoproteins show distinct metabolic fate in subjects and that this may be related to the presence of dyslipidemia and atherosclerosis. The question was raised whether induction of hyperlipidemia and atherosclerosis in rabbits would affect the metabolic behavior of the two cholesterol forms. Male New Zealand rabbits aged 4-5 months were allocated to a control group (N = 17) fed regular chow and to a 1% cholesterol-fed group (N = 13) during a 2-month period. Subsequently, the nanoemulsion labeled with ³H-FC and 14C-CE was injected intravenously for the determination of plasma kinetics and tissue uptake of the radioactive labels. In controls, FC and CE had similar plasma kinetics (fractional clearance rate, FCR = 0.234 ± 0.056 and 0.170 ± 0.038 h-1, respectively; P = 0.065). In cholesterol-fed rabbits, the clearance of both labels was delayed and, as a remarkable feature, FC-FCR (0.089 ± 0.033 h-1) was considerably greater than CE-FCR (0.046 ± 0.010 h-1; P = 0.026). In the liver, the major nanoemulsion uptake site, uptake of the labels was similar in control animals (FC = 0.2256 ± 0.1475 and CE = 0.2135 ± 0.1580%/g) but in cholesterol-fed animals FC uptake (0.0890 ± 0.0319%/g) was greater than CE uptake (0.0595 ± 0.0207%/g; P < 0.05). Therefore, whereas in controls, FC and CE have similar metabolism, the induction of dyslipidemia and atherosclerosis resulted in dissociation of the two forms of cholesterol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homocysteine is a sulfur-containing amino acid derived from the metabolism of methionine, an essential amino acid, and is metabolized by one of two pathways: remethylation or transsulfuration. Abnormalities of these pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is observed in approximately 5% of the general population and is associated with an increased risk for many disorders, including vascular and neurodegenerative diseases, autoimmune disorders, birth defects, diabetes, renal disease, osteoporosis, neuropsychiatric disorders, and cancer. We review here the correlation between homocysteine metabolism and the disorders described above with genetic variants on genes coding for enzymes of homocysteine metabolism relevant to clinical practice, especially common variants of the MTHFR gene, 677C>T and 1298A>C. We also discuss the management of hyperhomocysteinemia with folic acid supplementation and fortification of folic acid and the impact of a decrease in the prevalence of congenital anomalies and a decline in the incidence of stroke mortality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The South American sea lion, Otaria flavescens, is widely distributed along the Pacific and Atlantic coasts of South America. However, along the Brazilian coast, there are only two nonbreeding sites for the species (Refúgio de Vida Silvestre da Ilha dos Lobos and Refúgio de Vida Silvestre do Molhe Leste da Barra do Rio Grande), both in Southern Brazil. In this region, the species is continuously under the effect of anthropic activities, mainly those related to environmental contamination with organic and inorganic chemicals and fishery interactions. This paper reports, for the first time, the genetic diversity of O. flavescens found along the Southern Brazilian coast. A 287-bp fragment of the mitochondrial DNA control region (D-loop) was analyzed. Seven novel haplotypes were found in 56 individuals (OFA1-OFA7), with OFA1 being the most frequent (47.54%). Nucleotide diversity was moderate (π = 0.62%) and haplotype diversity was relatively low (67%). Furthermore, the median joining network analysis indicated that Brazilian haplotypes formed a reciprocal monophyletic clade when compared to the haplotypes from the Peruvian population on the Pacific coast. These two populations do not share haplotypes and may have become isolated some time back. Further genetic studies covering the entire species distribution are necessary to better understand the biological implications of the results reported here for the management and conservation of South American sea lions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined the response characteristics and functional correlates of the dynamic relationship between the rate (Δ) of oxygen consumption ( O2) and the applied power output (work rate = WR) during ramp-incremental exercise in patients with mitochondrial myopathy (MM). Fourteen patients (7 males, age 35.4 ± 10.8 years) with biopsy-proven MM and 10 sedentary controls (6 males, age 29.0 ± 7.8 years) took a ramp-incremental cycle ergometer test for the determination of the O2 on-exercise mean response time (MRT) and the gas exchange threshold (GET). The ΔO2/ΔWR slope was calculated up to GET (S1), above GET (S2) and over the entire linear portion of the response (S T). Knee muscle endurance was measured by isokinetic dynamometry. As expected, peak O2 and muscle performance were lower in patients than controls (P < 0.05). Patients had significantly lower ΔO2/ΔWR than controls, especially the S2 component (6.8 ± 1.5 vs 10.3 ± 0.6 mL·min-1·W-1, respectively; P < 0.001). There were significant relationships between ΔO2/ΔWR (S T) and muscle endurance, MRT-O2, GET and peak O2 in MM patients (P < 0.05). In fact, all patients with ΔO2/ΔWR below 8 mL·min-1·W-1 had severely reduced peak O2 values (<60% predicted). Moreover, patients with higher cardiopulmonary stresses during exercise (e.g., higher Δ ventilation/carbon dioxide output and Δ heart rate/ΔO2) had lower ΔO2/ΔWR (P < 0.05). In conclusion, a readily available, effort-independent index of aerobic dysfunction during dynamic exercise (ΔO2/ΔWR) is typically reduced in patients with MM, being related to increased functional impairment and higher cardiopulmonary stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH) secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibacterial monomers incorporated in dentin bonding systems may have toxic effects on the pulp. Thus, the cytotoxicity of antibacterial monomers and its underlying mechanisms must be elucidated to improve the safety of antibacterial monomer application. The influence of an antibacterial monomer, methacryloxylethyl cetyl ammonium chloride (DMAE-CB), on the vitality of L929 mouse fibroblasts was tested using MTT assay. Cell cycle progression was studied using flow cytometry. Production of intracellular reactive oxygen species (ROS) after DMAE-CB treatment was measured using 2,7-dichlorodihydrofluorescein diacetate staining and flow cytometry analysis. Loss of mitochondrial membrane potential, disturbance of Bcl-2 and Bax expression, as well as release of cytochrome C were also measured using flow cytometry analysis or Western blot to explore the possible involvement of the mitochondrial-related apoptotic pathway. DMAE-CB elicited cell death in a dose-dependent manner and more than 50% of cells were killed after treatment with 30 µM of the monomer. Both necrosis and apoptosis were observed. DMAE-CB also induced G1- and G2-phase arrest. Increased levels of intracellular ROS were observed after 1 h and this overproduction was further enhanced by 6-h treatment with the monomer. DMAE-CB may cause apoptosis by disturbing the expression of Bcl-2 and Bax, reducing the mitochondrial potential and inducing release of cytochrome C. Taken together, these findings suggest that the toxicity of the antibacterial monomer DMAE-CB is associated with ROS production, mitochondrial dysfunction, cell cycle disturbance, and cell apoptosis/necrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3’3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, which occurred in parallel with increased glutathione oxidation, hydroperoxide formation (xylenol orange assay) and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with diphenyl diselenide (100 µM) completely prevented the disruption of mitochondrial activity as well as the increase in TBARS levels caused by methylmercury. The compound 3’3-ditrifluoromethyldiphenyl diselenide provided a partial but significant protection against methylmercury-induced mitochondrial dysfunction (45.4 ± 5.8% inhibition of the methylmercury effect). Diphenyl diselenide showed a higher thiol peroxidase activity compared to the other three compounds. Catalase blocked methylmercury-induced TBARS, pointing to hydrogen peroxide as a vector during methylmercury toxicity in this model. This result also suggests that thiol peroxidase activity of organoselenium compounds accounts for their protective actions against methylmercury-induced oxidative stress. Our results show that diphenyl diselenide and potentially other organoselenium compounds may represent important molecules in the search for an improved therapy against the deleterious effects of methylmercury as well as other mercury compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.