143 resultados para LINEAR-GROUPS
Resumo:
The Technologies setting at Agricultural production system have the main characteristics the vertical productivity, reduced costs, soil physical, chemical and biological improvement to promote production sustainable growth. Thus, the study aimed to determine the variability and the linear and special correlations between the plant and soil attributes in order to select and indicate good representation of soil physical quality for forage productivity. In the growing season of 2006, on the Fazenda Bonança in Pereira Barreto (SP), the productivity of autumn corn forage (FDM) in an irrigated no-tillage system and the soil physical properties were analyzed. The purpose was to study the variability and the linear and spatial correlations between the plant and soil properties, to select an indicator of soil physical quality related to corn forage yield. A geostatistical grid was installed to collect soil and plant data, with 125 sampling points in an area of 2,500 m². The results show that the studied properties did not vary randomly and that data variability was low to very high, with well-defined spatial patterns, ranging from 7.8 to 38.0 m. On the other hand, the linear correlation between the plant and the soil properties was low and highly significant. The pairs forage dry matter versus microporosity and stem diameter versus bulk density were best correlated in the 0-0.10 m layer, while the other pairs - forage dry matter versus macro - and total porosity - were inversely correlated in the same layer. However, from the spatial point of view, there was a high inverse correlation between forage dry matter with microporosity, so that microporosity in the 0-0.10 m layer can be considered a good indicator of soil physical quality, with a view to corn forage yield.
Resumo:
The agricultural potential is generally assessed and managed based on a one-dimensional vision of the soil profile, however, the increased appreciation of sustainable production has stimulated studies on faster and more accurate evaluation techniques and methods of the agricultural potential on detailed scales. The objective of this study was to investigate the possibility of using soil magnetic susceptibility for the identification of landscape segments on a detailed scale in the region of Jaboticabal, São Paulo State. The studied area has two slope curvatures: linear and concave, subdivided into three landscape segments: upper slope (US, concave), middle slope (MS, linear) and lower slope (LS, linear). In each of these segments, 20 points were randomly sampled from a database with 207 samples forming a regular grid installed in each landscape segment. The soil physical and chemical properties, CO2 emissions (FCO2) and magnetic susceptibility (MS) of the samples were evaluated represented by: magnetic susceptibility of air-dried fine earth (MS ADFE), magnetic susceptibility of the total sand fraction (MS TS) and magnetic susceptibility of the clay fraction (MS Cl) in the 0.00 - 0.15 m layer. The principal component analysis showed that MS is an important property that can be used to identify landscape segments, because the correlation of this property within the first principal component was high. The hierarchical cluster analysis method identified two groups based on the variables selected by principal component analysis; of the six selected variables, three were related to magnetic susceptibility. The landscape segments were differentiated similarly by the principal component analysis and by the cluster analysis using only the properties with higher discriminatory power. The cluster analysis of MS ADFE, MS TS and MS Cl allowed the formation of three groups that agree with the segment division established in the field. The grouping by cluster analysis indicated MS as a tool that could facilitate the identification of landscape segments and enable the mapping of more homogeneous areas at similar locations.
Resumo:
ABSTRACT Diffuse reflectance spectroscopy (DRS) is a fast and cheap alternative for soil clay, but needs further investigation to assess the scope of application. The purpose of the study was to develop a linear regression model to predict clay content from DRS data, to classify the soils into three textural classes, similar to those defined by a regulation of the Brazilian Ministry of Agriculture, Livestock and Food Supply. The DRS data of 412 soil samples, from the 0.0-0.5 m layer, from different locations in the state of Rio Grande do Sul, Brazil, were measured at wavelengths of 350 to 2,500 nm in the laboratory. The fitting of the linear regression model developed to predict soil clay content from the DRS data was based on a R2 value of 0.74 and 0.75, with a RMSE of 7.82 and 8.51 % for the calibration and validation sets, respectively. Soil texture classification had an overall accuracy of 79.0 % (calibration) and 80.9 % (validation). The heterogeneity of soil samples affected the performance of the prediction models. Future studies should consider a previous classification of soil samples in different groups by soil type, parent material and/or sampling region.
Resumo:
The objective of this work was to assess the effect of two strains of Bacillus thuringiensis var. kurstaki on sorghum rhizosphere microorganisms. The strains were HD1, that produces the bioinsecticidal protein, and 407, that is a mutant non-producer. The strains do not influence microbial population, but reduce plant growth and improve mycorrhizal colonization and free living fixing N2 community.
Resumo:
The objective of this study was to adapt a nonlinear model (Wang and Engel - WE) for simulating the phenology of maize (Zea mays L.), and to evaluate this model and a linear one (thermal time), in order to predict developmental stages of a field-grown maize variety. A field experiment, during 2005/2006 and 2006/2007 was conducted in Santa Maria, RS, Brazil, in two growing seasons, with seven sowing dates each. Dates of emergence, silking, and physiological maturity of the maize variety BRS Missões were recorded in six replications in each sowing date. Data collected in 2005/2006 growing season were used to estimate the coefficients of the two models, and data collected in the 2006/2007 growing season were used as independent data set for model evaluations. The nonlinear WE model accurately predicted the date of silking and physiological maturity, and had a lower root mean square error (RMSE) than the linear (thermal time) model. The overall RMSE for silking and physiological maturity was 2.7 and 4.8 days with WE model, and 5.6 and 8.3 days with thermal time model, respectively.
Análise genética de escores de avaliação visual de bovinos com modelos bayesianos de limiar e linear
Resumo:
O objetivo deste trabalho foi comparar as estimativas de parâmetros genéticos obtidas em análises bayesianas uni-característica e bi-característica, em modelo animal linear e de limiar, considerando-se as características categóricas morfológicas de bovinos da raça Nelore. Os dados de musculosidade, estrutura física e conformação foram obtidos entre 2000 e 2005, em 3.864 animais de 13 fazendas participantes do Programa Nelore Brasil. Foram realizadas análises bayesianas uni e bi-características, em modelos de limiar e linear. De modo geral, os modelos de limiar e linear foram eficientes na estimação dos parâmetros genéticos para escores visuais em análises bayesianas uni-características. Nas análises bi-características, observou-se que: com utilização de dados contínuos e categóricos, o modelo de limiar proporcionou estimativas de correlação genética de maior magnitude do que aquelas do modelo linear; e com o uso de dados categóricos, as estimativas de herdabilidade foram semelhantes. A vantagem do modelo linear foi o menor tempo gasto no processamento das análises. Na avaliação genética de animais para escores visuais, o uso do modelo de limiar ou linear não influenciou a classificação dos animais, quanto aos valores genéticos preditos, o que indica que ambos os modelos podem ser utilizados em programas de melhoramento genético.
Resumo:
The objective of this work was to evaluate the species composition and functional groups of ants in nonagricultural (NA) and in irrigated areas (S, seasonal irrigation; P, irrigation with well water; W, irrigation with wastewater) in an arid agricultural region in central Mexico, throughout 2005 and 2006. A total of 52,358 ants belonging to 6 subfamilies, 21 genera and 39 species was collected using pitfall traps. The species best represented in all plots were: Forelius pruinosus, Pheidole obtusospinosa, Monomorium minimum and Dorymyrmex spp. NA plots recorded the highest density of ants. The highest values for diversity (H') and equitativity (J') were recorded in NA and P plots, while the lowest were recorded in W plots. Cluster analysis showed two different groups regarding species composition: NA-S and W-P. Functional groups recorded were: dominant Dolichoderinae, three species; subordinate Camponotini, five species; hot climate specialists, three species; tropical climate specialists, seven species; cold climate specialists, five species; cryptic species, one species; opportunists, six species; generalized Myrmicinae, nine species. Agricultural activity affects the structure of the ant community with epiedaphic forage, and the constant use of irrigation wastewater in conjunction with intense agricultural practices has negative effect upon species richness of epiedaphic ants.
Resumo:
The objective of this work was to determine the contents of methylxanthines, caffeine and theobromine, and phenolic compounds, chlorogenic and caffeic acids, in 51 mate progenies (half-sib families) and estimate the heritability of genetic parameters. Mate progenies were from five Brazilian municipalities: Pinhão, Ivaí, Barão de Cotegipe, Quedas do Iguaçu, and Cascavel. The progenies were grown in the Ivaí locality. The contents of the compounds were obtained by high performance liquid chromatography (HPLC). The estimation of genetic parameters by the restricted maximum likelihood (REML) and the prediction of genotypic values via best linear unbiased prediction (BLUP) were obtained by the Selegen - REML/BLUP software. Caffeine (0.248-1.663%) and theobromine (0.106-0.807%) contents were significantly different (p<0.05) depending on the region of origin, with high individual heritability (ĥ²>0.5). The two different progeny groups determined for chlorogenic (1.365-2.281%) and caffeic (0.027-0.037%) acid contents were not significantly different (p<0.05) depending on the locality of origin. Individual heritability values were low to medium for chlorogenic (ĥ²<0.4) and caffeic acid (ĥ²<0.3). The content of the compounds and the values of genetic parameters could support breeding programs for mate.
Resumo:
O objetivo deste trabalho foi determinar o tamanho de amostra para a estimação do coeficiente de correlação linear de Pearson entre caracteres de três híbridos de milho. Para as análises, foram tomadas aleatoriamente 361, 373 e 416 plantas, respectivamente, de híbridos simples, triplo e duplo. Para cada planta, os seguintes caracteres foram mensurados: diâmetro maior e menor do colmo, altura da planta e altura, peso, comprimento e diâmetro da espiga, número de fileiras por espiga, peso e diâmetro de sabugo, massa de cem grãos, número de grãos por espiga, comprimento e produtividade de grãos. Para cada um dos 91 pares de caracteres e híbridos, foi determinado o tamanho de amostra a partir de "bootstrap", com reposição de 1.000 amostras, de cada tamanho de amostra simulado. Na estimação do coeficiente de correlação linear de Pearson com a mesma precisão, o tamanho de amostra (número de plantas) aumenta na direção de pares de caracteres com menor intensidade de relação linear, independentemente do tipo de híbrido. Para os 91 pares de caracteres estudados, 252 plantas são suficientes para a estimação do coeficiente de correlação linear de Pearson, no intervalo de confiança de "bootstrap" de 95%, igual a 0,30
Resumo:
The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R) included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.
Resumo:
ABSTRACT The present study aimed at evaluating the heterotic group formation in guava based on quantitative descriptors and using artificial neural network (ANN). For such, we evaluated eight quantitative descriptors. Large genetic variability was found for the eight quantitative traits in the 138 genotypes of guava. The artificial neural network technique determined that the optimal number of groups was three. The grouping consistency was determined by linear discriminant analysis, which obtained classification percentage of the groups, with a value of 86 %. It was concluded that the artificial neural network method is effective to detect genetic divergence and heterotic group formation.
Resumo:
Os parâmetros dosimétricos de um feixe de raios X de pequeno diâmetro para um sistema de radiocirurgia comercial foram medidos em água com um detector de diodo de Si do tipo p. As razões tecido-máximo, o fator de espalhamento total e os perfis dos feixes a profundidades de 5 e 10 cm foram medidos para 17 feixes de diâmetros circulares de 5 mm a 50 mm, em incrementos de 2,5 mm. Os fatores de espalhamento totais caíram lentamente, de 0,947 para 0,888 entre os cones de 50 mm e 12,5 mm de diâmetro (variação de 7%); para os cones entre 10 mm e 5 mm de diâmetro, esta queda foi bem maior, de 0,854 para 0,666 (variação de 28%). Os valores obtidos para a relação tecido-máximo são consistentes com dados publicados. Os perfis dos feixes foram medidos nas direções x e y, e estão dentro de 0,2 mm para todos os cones entre as duas direções. A medida da largura à meia-altura se encontra dentro de 1 mm com o diâmetro nominal dos cones.
Resumo:
Este trabalho apresenta a parte operacional do processo final envolvido na implantação de um programa de controle de qualidade por meio de testes rotineiros mecânicos e de radiação. O programa de controle de qualidade, durante 35 meses, mostrou a estabilidade excelente deste acelerador.
Resumo:
QSAR studies based on flow microcalorimetric bioassay data for interaction of homologous series of m-alkoxyphenols and p-hydroxybenzoates with E. coli cells were carried out applying factorial design. Results for both series showed a linear relationship between log(dose)max and log Po/w. Analysis of these data allows the identification of contributions toward the derived bioactivity from the parent structures (the molecule minus n-CH2 groups present in the side-chain) and the lipophilic groups, CH2. These results are discussed with respect to drug quantitative structure-relationship.