253 resultados para Insects


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is destinated to prove that the castes : workers and queens, in Melipona bees are due to genetic factors and not to differences in food. 2) Material used: Hives of Melipona quadri-fasciata anthidioides (Lep. 1836), M. schenki schenki (Gribodo, 1893), M. fasciata rufiventris (Lep. 1836), M. quadri-fasciata vicina (Lep. 1836), M. marginata marginata (Lep. 1836), Apis mellifera (L. 1758). 3) It should be pointed out that in Melipona bees there are no royal cells for the queens, but all the cells are of the same size independently of being destinated for workers, queens or drones. The numerous queens which are born are killed soon after emerging from their cells. 4) Changes of feeding in quality and in quantity caused no variation of castes. The only variable factor is the size, which becomes bigger when the bee is well nourished. 5) The offsprings of 5 hives were examined : 3 of M. quadri-fasciata anthidioides (n.o 1, n.o 2 and n.o 3), 1 of M. quadri-fasciata vicina (n.o 4) and 1 of M. marginata marginata (n.o 5). Combs of about 40 cells were taken into laboratory and the type of bee registered immediately after emerging. The results of the counts were: BOX COMB WORKER QUEEN PERCENTAGE Σ X2 to 12,5% Nº 1 1th 69 8 10,4% 0, 3139 " 1 2nd 144 18 11,1% 0, 2856 " 2 1th 52 8 13,3% 0, 0384 " 3 1th 45 10 18,2% 1, 6736 " 4 1th 56 4 6,7% 1, 8686 " 4 2nd 29 4 12,1% 0,00432 Σ X2 to 25% " 5 1th 34 14 29,2% 0,44444 "5 2nd 83 27 24,5% 0, 0121 In the 4 first boxes there is a percentage of 11,63% queens and in the last there is a percentage of 25,95%. 6) These percentages are very near two genetical ratios: 12,5% or 7:1, and 25% or 3:1, which correspond to a trifactorial and a bifactorial back-cross. Carrying out a X² test no significant deviations were found ( X² to 12,5% and to 25% and table 1 to 4). 7) We suppose that the formula for the queen in the first case (11,65%) is: AaBbCc. Since the Melipona bees are arrhenotokous hymenopteres, the drones are haploid and may have any one of the following eight formulas, corresponding to the gonic segregation of the queem : ABC, ABc, Abc, Abc, AbC, aBC, aBc, abC, abc. Anyone combination of these males with the queen will give a segregation of 7 workers to 1 queen, since there is always only one triple heterozygote among the eight possible segregates (table 5). 8) In order to explain the second case, it is suffient to assume that in this species there are only two pairs of factors, the queen being the double heterozygote : AaBb, while the drones may have any one of the following constitutions: AB, Ab, aB and ab. Workers are again all diploids which are homozygous for one or both factors, for instance: AABB, AABb, AaBB, aaBb, AAbb, etc. (table 6). 9) It is suggested that the genus Melipona is an intermediary type between the solitary bees, where all females are fertile independently of their feeding, and the genera Apis and Trigona, where without special feeding all females are born sterile, while only specially fed females develop into fertile queens. 10) No speculations are put forward with regards to the evolutionary mechanism which may have been responsible for the development of the genetical determination of castes in Melipona, since it seems advisable point to extend the studies to other insects with complicated caste systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brassolis sophorae (L.) (Lep., Brassolidae) is an old and important pest of some Brazilian Palmae, among which Cocos nucifera L. and Copemicia cerifera Mart, are the most valuable economically. Eggs are attacked by Anastatus reduvii (Howard) (Eupel-midae) and Telenomus sp. and Telenomus nigrocoxdlis Ashmead (Scelionidae), the larvae being destroyed by Withemia pinguis (F.) (Tachinidae). Six other insects devellop inside the pupae : Xanthozona melanopyga (Wiedmann) and Belvosia sp. (Tachinidae) and the Hymenoptera Brachymeria annulata (F.), B. incerta (Cres-son), Spilochalcis nigrifrons Cameron and S. morleyi Ashmead (Chalcicidae), the last of them being principally treated in this paper. A species of Sarcophagidae (Sarcophaga lambens Wiedmann) was also noted, some flies being gotten from a single pupa. In Piracicaba (State of S. Paulo, Brasil), according to the Author's observations, B. sophorae principal enemy is X. melanopyga, to which our attention has to be directed in a biological fight against the mentioned Brassolidae. The reported Telenomus sp. is also very harmful to B. sophorae eggs. In the whole zone of its distribution, the hosts of B. sophorae caterpillars are Palmae plants, appearing sporadically feeding on banana and sugar cane leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studying the meiosis of two Hemiptera, mamely, Lybindus dichrous (Coreidae) and Euryophthalmus humilis (Pyrrhocoridae), the author has found new proofs in favor of the existence of a centromere at each end of the chromosomes of the insects belonging to that order. Following the behaviour of a pair of large autosomes of Lybindus, he was able to verify that in the first division of the spermatocytes, the tetrad they form divides transversely by the middle, giving rise to two V-shaped anaphase chromosomes that go to the poles with the vertex pointing forwardly. From the end of the first division till the metaphase of the second one, the centromeres occupying the vertex of the V go apart from one another, making the chiasmata existing there slip to the opposite extremities, what changes the V into an X. When the chiasmata reach the acentric ends, the X is again converted into a V. The V of the secondary metaphase, therefore, differs from the V of the primary anaphase, in being inverted that is, in having the centromeres in the extremity of its arms, and no longer in the vertex as in the latter. The opening out of the chromosomes starting at the centric extremities in order to recuperate the dumbbell shape they show in the secondary anaphase, just in the manner postulated by PIZA, is thus demonstrated. In Euryophthalmus humilis it was verified once more, that the heterochromosome, in the secondary spermatocytes, orients parallelly to the spindle axis, accompanying with its ends the anaphase plates as they move to the poles. The author is in disagreement with NORONHA-WAGNER & DUARTE DE CASTRO's interpretation of the behaviour of the chromosomes in meiosis of Luzula nemorosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper includes a few notes on some Homoptera insects of the genus Fulgora, according to a study carried out on a little collection belonging to the Laboratory of Zoology of the Escola Superior de Agricultura "Luiz de Queiroz" (Piracicaba, Brazil). The following species are mentioned: F. servillei Spinola, F. lucifera Germar, F. orthocephala (Pinto da Fonseca) and F. cearensis (Pinto da Fonseca). The types of the latter having been collected in Fortaleza (Ceará), its area of distribution is considerably enlarged by the information of its occurrence in the State of São Paulo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors study the insect population that visit the mango trees and search for their pollinizing activity. Prior operations showed that very few bees (Apis mellifera) visited the flowers of mango trees. It was known that the percentage of fecundation is low (Simão 1955), Popenoe (1929), Spencer and Kennard (1955), Lynch and Mustard (1955), Ruehle and Ledin (1955), so that the authors wented to Know if insects could be responsible for this. Insects were collected from mango trees, belonging to 10 orders, which, on the whole are not pollinizing agents. Bees were not collected, 21% were Hymenoptera, 20% were Diptera, 13% Hemiptera, 10% Coleoptera, 3% Blattariae and smoller percentages belonged to other orders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with Mimosicerya hempeli (Cock., 1899) (Homoptera, Margarodidae) and its predator, the ladybeetle Exo-plectra erythrogaster Muls., 1851 (Coleoptews, Coccinellidae), which were found to occur at Piracicaba, State of São Paulo, Brasil. The first is a pest of "cássia imperial" (Cassia fistula L.), and several other trees. As those insects are little known, a few bionomical notes and descriptions of some of their stages are presented. The adult scales proved to be very resistant to an application of mineral oil plus malathion. Methyl Demeton applied with irrigation water showed no control. The same insecticide injected into the trunk gave very poor results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research was carried out to study some aspects of the biology and behavior of Nesolynx sp. (Hymenoptera, Eulophidae), a pupal parasite of Psorocampa denticulata (Lepidoptera, Notodontidae) a defoliating caterpillar of Eucalyptus spp. in Brazil. The adults emerge from the host pupa through a circular hole on Its dorsal region. Mating occurs righ after the emergence and the longevity of adults was two days for the males and four days for the females. Regarding to the host species Diatraea saccharalis showed a number of adults significantly greater than Galleria mellonella and the increasing temperature from 21±1 °C to 26±1°C caused a significative increasing in the number of emerged adults in both host species. The emergence of adults increased proportionally to the period of exposition to the host up to 3.50 days; after that, a considerable decrease in the emergence was observed. The parasitoid showed parthenogenetic reproduction therefore the average number of emerged males was significantly greater than the number of females. The sex ratio was similar for the insects emerged from virgin or mated females (0,96) and the life cycle lenght was around 18.34 days for both conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The yellow passion Passiflora edulis f. flavicarpa Deg. is allogamous, self incompatible, and it depends of insects pollinators to disseminate the pollen grains. The field work was conducted at Campos dos Goytacazes, Rio de Janeiro, Brazil, from October 17 to November 9 and December 12 to 21, 1995. It was analyzed 1565 flower buds, from which 423 showed well developed ovaries, five days after opening, this represents 27% of fruit set by natural pollination. It was observed 76,86 % of completely curved flowers, 21,22 % of partially curved flowers, and 1,92 % flowers without curvature. Five species of bees where observed on the flowers, from which two were the effective pollinator of yellow passion flower: Xylocopa (Megaxylocopa) frontalis (Olivier, 1789) and X. (Neoxylocopa) ordinaria Smith, 1874.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stink bugs are seed/fruit sucking insects feeding on an array of host plants. Among them, an exotic tree called privet, Ligustrum lucidum Ait. (Oleaceae), is very common in the urban areas of the Brazilian subtropics, where it is utilized as food source and shelter for over a decem species of bugs, year round. The species composition, their performance and abundance on this host, and possible causes for this association are discussed and illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study reports the changes ocurred in feeding ecology of fish species during a tropical river reservoir formation. It was analysed the stomachal contents of 399 individuals belonging to four species of genus Leporinus (L. elongatus Valenciennes, 1849, n=157; L.friderici (Bloch, 1794), n=87; L. octofasciatus Steindachner, 1917, n=107; L.amblyrhynchus Garavello & Britski, 1987, n=48) during formation of Nova Ponte reservoir, State of Minas Gerais, Brazil, in 1993 and 1994. Specimens were separated by sampling period, according with the rate of filling of the reservoir, and standard lenght classes. The species had included in diet vegetal and animal items of autochtone and alochtone origin in several proportions. L. amblyrhynchus fed on basically dipterans in all the sampling periods and length classes. L. elongatus had presented a diverse diet, with predominance of dipterans and vegetal items, and changed the consumed items proportions along the sampling periods and between lenght classes. L. friderici diet was composed mainly by terrestrial insects during the rapid filling period, that were later substituted by fishes and vegetal items. Ontogenetic trophic changes were observed in this species. L. octofasciatus presented a well characterized herbivorous diet, without trophic ontogeny, but with a opportunistic character. Just three pair-species, L. amblyrhynchus-L. elongatus, L. friderici-L. octofasciatus and L. elongatus-L. octofasciatus, have presented some high value of trophic overlap in at least one sampling period. In spite of the fishes of the genus Leporinus being classified like omnivorous in a general way, the differences found between diets of these four species suggest that there is structuration of trophic niches in the reservoir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schwarzula coccidophila sp. nov., a tiny Amazonian stingless bee, that attends scale insects (Cryptostigma Ferris, 1922, Coccidae) in its nest, is described. It is distinguished from Schwarzula timida (Silvestri, 1902), the only other species of the genus, mainly by the malar area longer than diameter of 3rd flagellomere, and the denser plumose pilosity. Additional records of S. timida is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diet of two cichlid species, Cichlasoma facetum (Jenyns, 1842), and Gymnogeophagus rhabdotus Hensel, 1870, was studied in Rodó Lake, an urban hypertrophic lake in Uruguay. The stomach contents from 192 individuals of C. facetum and 202 of G. rhabdotus, obtained through seasonal sampling in the year 2000, were analyzed. The occurrence frequency and the alimentary importance index of each food item were calculated for each season and size class in both species. Cichlasoma facetum fed upon insects (mainly chironomid larvae and pupae), fish (Cnesterodon decemmaculatus Jenyns, 1842), and vegetals (algae, periphyton and macrophytes debris); large individuals also fed upon the freshwater shrimp Palaemonetes argentinus Nobili, 1901. Gymnogeophagus rhabdotus consumed zooplankton (mainly copepods), vegetals (algae and detritus) and Chironomidae larvae in a lesser extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed stomach contents of 58 specimens of Teius oculatus (D'Orbigny & Bibron, 1837) (20 adult males, 17 adult females and 21 juveniles) captured in Dom Feliciano, RS, Brazil, to evaluate diet composition and sexual and ontogenetic variations in prey consumption. Diet was composed of 15 prey categories, all arthropods. Orthoptera was the most frequent prey type. Quantitatively, termites were the most important prey item (59.5%). There were no significant differences between the diets of adult males and females. Ontogenetic differences were found, mainly concerning volume of prey consumed. Adult lizards ingested significantly larger prey than juveniles (U = 170.00; p < 0.001). Juveniles, although having a comparatively less diverse diet (10 prey types) consumed a larger number of items (45.7% of total). Diet similarity was higher between juveniles and adult males (Ojk = 0.97) and prey diversity was higher in the diet of adult females (H' = 2.65). Based on importance value index the most important item in the diet of T. oculatus was Orthoptera. We conclude that T. oculatus in Dom Feliciano has a relatively generalized diet and it is an opportunist lizard, feeding on arthropods, mainly insects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was to determine the diversity and population fluctuations of calliphorid flies in the Biological Reserve of Tinguá (ReBio-Tinguá), Nova Iguaçu, state of Rio de Janeiro, Brazil and to correlate their occurrence with the environmental variables of temperature, rainfall and relative air humidity. Specimens of Diptera were collected monthly between June 2002 and January 2005 using four traps placed at four points along a trail and exposed for 48 hours. The traps were baited with sardines and the trapped insects were stored in 70% alcohol. It was collected 8,528 calliphorids, thirteen species were identified among the blowflies including Laneela nigripes Guimarães 1977, Chrysomya megacephala (Fabricius, 1794), C. albiceps (Wiedemann, 1819), C. putoria (Wiedemann, 1830), Chloroprocta idioidea (Robineau-Devoidy, 1830), Cochliomyia macellaria (Fabricius, 1775), Hemilucilia semidiaphana (Rondani, 1850), H. segmentaria (Fabricius, 1805), Lucilia eximia (Wiedemann,1819), L. cuprina (Wiedemann, 1830), Paralucilia pseudolyrcea (Mello, 1969), Mesembrinella sp. and Eumesembrinella pauciseta (Aldrich, 1922). No significant correlation was found between the abundance of blowflies and the temperature and relative air humidity. Only C. megacephala and C. albiceps showed a positive and significant correlation with rainfall. An analysis of grouping by month (UPGMA) revealed no seasonal difference in the composition of the community, indicating that the community of calliphorid flies is probably more influenced by the ecological niches occupied by each species than by the seasons of the year.