107 resultados para Infusion Fluid
Resumo:
The purpose of the present study was to identify noninvasive methods to evaluate the severity of iron overload in transfusion-dependent ß-thalassemia and the efficiency of intensive intravenous therapy as an additional tool for the treatment of iron-overloaded patients. Iron overload was evaluated for 26 ß-thalassemia homozygous patients, and 14 of them were submitted to intensive chelation therapy with high doses of intravenous deferoxamine (DF). Patients were classified into six groups of increasing clinical severity and were divided into compliant and non-compliant patients depending on their adherence to chronic chelation treatment. Several methods were used as indicators of iron overload. Total gain of transfusion iron, plasma ferritin, and urinary iron excretion in response to 20 to 60 mg/day subcutaneous DF for 8 to 12 h daily are useful to identify iron overload; however, urinary iron excretion in response to 9 g intravenous DF over 24 h and the increase of urinary iron excretion induced by high doses of the chelator are more reliable to identify different degrees of iron overload because of their correlation with the clinical grades of secondary hemochromatosis and the significant differences observed between the groups of compliant and non-compliant patients. Finally, the use of 3-9 g intravenous DF for 6-12 days led to a urinary iron excretion corresponding to 4.1 to 22.4% of the annual transfusion iron gain. Therefore, continuous intravenous DF at high doses may be an additional treatment for these patients, as a complement to the regular subcutaneous infusion at home, but requires individual planning and close monitoring of adverse reactions.
Resumo:
Angiotensin II and atrial natriuretic peptide (ANP) play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT) that acts on its receptors in the heart to cause the release of ANP. ANP activates guanylyl cyclase that converts guanosine triphosphate into cyclic guanosine monophosphate (cGMP). cGMP activates protein kinase G that reduces heart rate and force of contraction, decreasing cardiac output. ANP acts similarly to induce vasodilation. The intrinsic OT system in the heart and vascular system augments the effects of circulating OT to cause a rapid reduction in effective circulating blood volume. Furthermore, natriuresis is rapidly induced by the action of ANP on its tubular guanylyl cyclase receptors, resulting in the production of cGMP that closes Na+ channels. The OT released by volume expansion also acts on its tubular receptors to activate nitric oxide synthase. The nitric oxide released activates guanylyl cyclase leading to the production of cGMP that also closes Na+ channels, thereby augmenting the natriuretic effect of ANP. The natriuresis induced by cGMP finally causes blood volume to return to normal. At the same time, the ANP released acts centrally to decrease water and salt intake.
Resumo:
Visceral leishmaniasis in Brazil is caused by Leishmania (Leishmania) chagasi and the dog is its most important reservoir. The clinical features in dogs include loss of weight, lymphadenopathy, renal failure, skin lesions, fever, hypergammaglobulinemia, hepatosplenomegaly, anemia, and, rarely, neurological symptoms. Most infected animals develop active disease, characterized by high anti-leishmania antibody titers and depressed lymphoproliferative ability. Antibody production is not primarily important for protection but might be involved in the pathogenesis of tissue lesions. An ELISA test was used to determine if there is an association between neurological symptoms and the presence of anti-L. chagasi antibodies in cerebrospinal fluid (CSF). Thirty serum and CSF samples from symptomatic mixed breed dogs (three with neurological symptoms) from a region of high incidence of visceral leishmaniasis in Brazil were examined for antibody using total parasite antigen and anti-dog IgG peroxidase conjugate. A high level of L. chagasi antibodies was observed in sera (mean absorbance ± SD, 1.939 ± 0.405; negative control, N = 20, 0.154 ± 0.074) and CSF (1.571 ± 0.532; negative control, N = 10, 0.0195 ± 0.040) from all animals studied. This observation suggests that L. chagasi can cause breakdown of filtration barriers and the transfer of antibodies and antigens from the blood to the CSF compartment. No correlation was observed between antibody titer in CSF and neurological symptoms.
Resumo:
The production of reactive oxygen species (ROS) by polymorphonuclear leukocytes (PMN) can be induced by immune complexes and is an important component of phagocytosis in the killing of microorganisms, but can also be involved in inflammatory reactions when immune complexes are deposited in tissues. We have observed that fluid-phase IgG can inhibit the generation of ROS by rabbit PMN stimulated with precipitated immune complexes of IgG (ICIgG) in a dose-dependent manner, acting as a modulatory factor in the range of physiological IgG concentrations. This inhibitory effect is compatible with the known affinity (Kd) of monomeric IgG for the receptors involved (FcRII and FcRIII). The presence of complement components in the immune complexes results in a higher stimulation of ROS production. In this case, however, there is no inhibition by fluid-phase IgG. The effect of complement is strongly dependent on the presence of divalent cations (Ca2+ or Mg2+) in the medium, whereas the stimulation of ICIgG (without complement) does not depend on these cations. We have obtained some evidence indicating that iC3b should be the component involved in the effect of complement through interaction with the CR3 receptor. The absence of the inhibitory effect of fluid-phase IgG in ROS production when complement is present in the immune complex shows that complement may be important in vivo not only in the production of chemotactic factors for PMN, but also in the next phase of the process, i.e., the generation of ROS.
Resumo:
Allogeneic bone marrow transplantation (alloBMT) is the only curative therapy for chronic myelogenous leukemia (CML). This success is explained by the delivery of high doses of antineoplastic agents followed by the rescue of marrow function and the induction of graft-versus-leukemia reaction mediated by allogeneic lymphocytes against host tumor cells. This reaction can also be induced by donor lymphocyte infusion (DLI) producing remission in most patients with CML who relapse after alloBMT. The immunological mechanisms involved in DLI therapy are poorly understood. We studied five CML patients in the chronic phase, who received DLI after relapsing from an HLA-identical BMT. Using flow cytometry we evaluated cellular activation and apoptosis, NK cytotoxicity, lymphocytes producing cytokines (IL-2, IL-4 and IFN-gamma), and unstimulated (in vivo) lymphocyte proliferation. In three CML patients who achieved hematological and/or cytogenetic remission after DLI we observed an increase of the percent of activation markers on T and NK cells (CD3/DR, CD3/CD25 and CD56/DR), of lymphocytes producing IL-2 and IFN-gamma, of NK activity, and of in vivo lymphocyte proliferation. These changes were not observed consistently in two of the five patients who did not achieve complete remission with DLI. The percent of apoptotic markers (Fas, FasL and Bcl-2) on lymphocytes and CD34-positive cells did not change after DLI throughout the different study periods. Taken together, these preliminary results suggest that the therapeutic effect of DLI in the chronic phase of CML is mediated by classic cytotoxic and proliferative events involving T and NK cells but not by the Fas pathway of apoptosis.
Resumo:
To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length) of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC). Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v)) did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6). When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v)) inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group), and isoproterenol (N = 5; P < 0.05). Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated) of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system.
Resumo:
Shiga toxin (Stx)-producing Escherichia coli (STEC) colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis), and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw) across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.
Resumo:
Adrenomedullin, a 52-amino acid residue peptide, has numerous biological actions which are of potential importance to cardiovascular homeostasis, growth and development of cardiovascular tissues and bone, prevention of infection, and regulation of body fluid and electrolyte balance. Studies in man using intravenous infusion of the peptide have demonstrated that, at plasma levels detected after myocardial infarction or in heart failure, adrenomedullin reduces arterial pressure, increases heart rate and cardiac output, and activates the sympathetic and renin-angiotensin systems but suppresses aldosterone. The thresholds for these responses differ, being lower under some experimental circumstances for arterial pressure than for the other biological effects. Adrenomedullin administration inhibits the pressor and aldosterone-stimulating action of angiotensin II in man. By contrast, the pressor effect of norepinephrine is little altered by concomitant adrenomedullin administration. Although in the absence of a safe, specific antagonist of the actions of endogenous adrenomedullin it is difficult to be certain about the physiological and pathophysiological importance of this peptide in man, current evidence suggests that it serves to protect against cardiovascular overload and injury. Hope has been expressed that adrenomedullin or an agonist specific for adrenomedullin receptors might find a place in the treatment of cardiovascular disorders.
Resumo:
The assessment of fluid volume in neonates by a noninvasive, inexpensive, and fast method can contribute significantly to increase the quality of neonatal care. The objective of the present study was to calibrate an acquisition system and software to estimate the bioelectrical impedance parameters obtained by a method of bioelectrical impedance spectroscopy based on step response and to develop specific equations for the neonatal population to determine body fluid compartments. Bioelectric impedance measurements were performed by a laboratory homemade instrument. The volumes were estimated in a clinical study on 30 full-term neonates at four different times during the first month of life. During the first 24 hours of life the total body water, extracellular water and intracellular water were 2.09 ± 0.25, 1.20 ± 0.19, and 0.90 ± 0.25 liters, respectively. By the 48th hour they were 1.87 ± 0.27, 1.08 ± 0.17, and 0.79 ± 0.21 liters, respectively. On the 10th day they were 2.02 ± 0.25, 1.29 ± 0.21, and 0.72 ± 0.14 liters, respectively, and after 1 month they were 2.34 ± 0.27, 1.62 ± 0.20, and 0.72 ± 0.13 liters, respectively. The behavior of the estimated volume was correlated with neonatal body weight changes, leading to a better interpretation of such changes. In conclusion, this study indicates the feasibility of bioelectrical impedance spectroscopy as a method to help fluid administration in intensive care neonatal units, and also contribute to the development of new equations to estimate neonatal body fluid contents.
Resumo:
The objective of the present study was to examine the association between follicular fluid (FF) steroid concentration and oocyte maturity and fertilization rates. Seventeen infertile patients were submitted to ovulation induction with urinary human follicle-stimulating hormone, human menopausal gonadotropin and human chorionic gonadotropin (hCG). A total of 107 follicles were aspirated after hCG administration, the oocytes were analyzed for maturity and 81 of them were incubated and inseminated in vitro. Progesterone, estradiol (E2), estrone, androstenedione, and testosterone were measured in the FF. E2 and testosterone levels were significantly higher in FF containing immature oocytes (median = 618.2 and 16 ng/ml, respectively) than in FF containing mature oocytes (median = 368 and 5.7 ng/ml, respectively; P < 0.05). Progesterone, androstenedione and estrone levels were not significantly different between mature and immature oocytes. The application of the receiver-operating characteristic curve statistical approach to determine the best cut-off point for the discrimination between mature and immature oocytes indicated levels of 505.8 ng/ml for E2 (81.0% sensitivity and 81.8% specificity) and of 10.4 ng/ml for testosterone (90.9% sensitivity and 82.4% specificity). Follicular diameter was associated negatively with E2 and testosterone levels in FF. There was a significant increase in progesterone/testosterone, progesterone/E2 and E2/testosterone ratios in FF containing mature oocytes, suggesting a reduction in conversion of C21 to C19, but not in aromatase activity. The overall fertility rate was 61% but there was no correlation between the steroid levels or their ratios and the fertilization rates. E2 and testosterone levels in FF may be used as a predictive parameter of oocyte maturity, but not for the in vitro fertilization rate.
Resumo:
The goal of the present study was to determine concentrations of E-selectin in both cerebrospinal fluid (CSF) and serum of patients with aneurysmal subarachnoid hemorrhage (SAH) and to evaluate the correlation between the clinical parameters and E-selectin levels. Both CSF and serum samples obtained from 12 patients with aneurysmal SAH and 8 patients with hydrocephalus (control group) without any other known central nervous system disease were assayed for E-selectin by quantitative enzyme-linked immunosorbent assay and the results were compared between the two groups. Mean levels of soluble forms of E-selectin within the first 3 days and on the 5th and 7th days of SAH were 4.0 ± 7.9, 2.8 ± 5.2, and 3.1 ± 4.9 ng/ml in the patient's CSF, and 33.7 ± 9.2, 35.1 ± 7.0, and 35.2 ± 8.7 ng/ml in serum, respectively. In contrast, mean E-selectin levels were 0.1 ± 0.2 ng/ml in CSF and 8.7 ± 5.0 ng/ml in serum of control patients. The difference between groups was statistically significant regarding both CSF and serum E-selectin levels (P < 0.05). Thus, we have demonstrated a marked increase of E-selectin concentration in both CSF and serum of patients with aneurysmal SAH compared with control and suggest that blocking the interaction between E-selectin and vascular endothelium may have a beneficial effect on vasospasms.
Resumo:
The clinical manifestations of neurocysticercosis (NC) are varied and depend on the number and location of cysts, as well as on the host immune response. Symptoms usually occur in NC when cysticerci enter a degenerative course associated with an inflammatory response. The expression of brain damage markers may be expected to increase during this phase. S100B is a calcium-binding protein produced and released predominantly by astrocytes that has been used as a marker of reactive gliosis and astrocytic death in many pathological conditions. The aim of the present study was to investigate the levels of S100B in patients in different phases of NC evolution. Cerebrospinal fluid and serum S100B concentrations were measured in 25 patients with NC: 14 patients with degenerative cysts (D), 8 patients with viable cysts (V) and 3 patients with inactive cysts. All NC patients, except 1, had five or less cysts. In most of them, symptoms had been present for at least 1 month before sample collection. Samples from 8 normal controls (C) were also assayed. The albumin quotient was used to estimate the blood-brain barrier permeability. There were no significant differences in serum (P = 0.5) or cerebrospinal fluid (P = 0.91) S100B levels among the V, D, and C groups. These findings suggest that parenchymal changes associated with a relatively small number of degenerating cysts probably have a negligible impact on glial tissue.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the human central nervous system. Although its etiology is unknown, the accumulation and activation of mononuclear cells in the central nervous system are crucial to its pathogenesis. Chemokines have been proposed to play a major role in the recruitment and activation of leukocytes in inflammatory sites. They are divided into subfamilies on the basis of the location of conserved cysteine residues. We determined the levels of some CC and CXC chemokines in the cerebrospinal fluid (CSF) of 23 relapsing-remitting MS patients under interferon-ß-1a therapy and 16 control subjects using ELISA. MS patients were categorized as having active or stable disease. CXCL10 was significantly increased in the CSF of active MS patients (mean ± SEM, 369.5 ± 69.3 pg/mL) when compared with controls (178.5 ± 29.1 pg/mL, P < 0.05). CSF levels of CCL2 were significantly lower in active MS (144.7 ± 14.4 pg/mL) than in controls (237.1 ± 16.4 pg/mL, P < 0.01). There was no difference in the concentration of CCL2 and CXCL10 between patients with stable MS and controls. CCL5 was not detectable in the CSF of most patients or controls. The qualitative and quantitative differences of chemokines in CSF during relapses of MS suggest that they may be useful as a marker of disease activity and of the mechanisms involved in the pathogenesis of the disease.
Resumo:
Our objective was to measure maternal plasma and amniotic fluid amino acid concentrations in pregnant women diagnosed as having fetuses with gastroschisis in the second trimester of pregnancy. Twenty-one pregnant women who had fetuses with gastroschisis detected by ultrasonography (gastroschisis group) in the second trimester and 32 women who had abnormal triple screenings indicating an increased risk for Down syndrome but had healthy fetuses (control group) were enrolled in the study. Amniotic fluid was obtained by amniocentesis, and maternal plasma samples were taken simultaneously. The chromosomal analysis of the study and control groups was normal. Levels of free amino acids and non-essential amino acids were measured in plasma and amniotic fluid samples using EZ:fast kits (EZ:fast GC/FID free (physiological) amino acid kit) by gas chromatography (Focus GC AI 3000 Thermo Finnigan analyzer). The mean levels of essential amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine) and non-essential amino acids (alanine, glycine, proline, and tyrosine) in amniotic fluid were found to be significantly higher in fetuses with gastroschisis than in the control group (P < 0.05). A significant positive correlation between maternal plasma and amniotic fluid concentrations of essential and nonessential amino acids was found only in the gastroschisis group (P < 0.05). The detection of significantly higher amino acid concentrations in the amniotic fluid of fetuses with a gastroschisis defect than in healthy fetuses suggests the occurrence of amino acid malabsorption or of amino acid leakage from the fetus into amniotic fluid.
Resumo:
The balance of body fluids is critical to health and the development of diseases. Although quite a few review papers have shown that several mechanisms, including hormonal and behavioral regulation, play an important role in body fluid homeostasis in adults, there is limited information on the development of regulatory mechanisms for fetal body fluid balance. Hormonal, renal, and behavioral control of body fluids function to some extent in utero. Hormonal mechanisms including the renin-angiotensin system, aldosterone, and vasopressin are involved in modifying fetal renal excretion, reabsorption of sodium and water, and regulation of vascular volume. In utero behavioral changes, such as fetal swallowing, have been suggested to be early functional development in response to dipsogens. Since diseases, such as hypertension, can be traced to fetal origin, it is important to understand the development of fetal regulatory mechanisms for body fluid homeostasis in this early stage of life. This review focuses on fetal hormonal, behavioral, and renal development related to regulation of body fluids in utero.