81 resultados para INDUCTION GENERATOR
Resumo:
We examined the degeneration of post-mitotic ganglion cells in ex-vivo neonatal retinal explants following axon damage. Ultrastructural features of both apoptosis and autophagy were detected. Degenerating cells reacted with antibodies specific for activated caspase-3 or -9, consistent with the presence of caspase activity. Furthermore, peptidic inhibitors of caspase-9, -6 or -3 prevented cell death (100 µM Ac-LEDH-CHO, 50 µM Ac-VEID-CHO and 10 µM Z-DEVD-fmk, respectively). Interestingly, inhibition of autophagy by 7-10 mM 3-methyl-adenine increased the rate of cell death. Immunohistochemistry data, caspase activation and caspase inhibition data suggest that axotomy of neonatal retinal ganglion cells triggers the intrinsic apoptotic pathway, which, in turn, is counteracted by a pro-survival autophagic response, demonstrated by electron microscopy profiles and pharmacological autophagy inhibitor.
Resumo:
In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.
Resumo:
Chagas' myocardiopathy, caused by the intracellular protozoan Trypanosoma cruzi, is characterized by microvascular alterations, heart failure and arrhythmias. Ischemia and arrythmogenesis have been attributed to proteins shed by the parasite, although this has not been fully demonstrated. The aim of the present investigation was to study the effect of substances shed by T. cruzi on ischemia/reperfusion-induced arrhythmias. We performed a triple ischemia-reperfusion (I/R) protocol whereby the isolated beating rat hearts were perfused with either Vero-control or Vero T. cruzi-infected conditioned medium during the different stages of ischemia and subsequently reperfused with Tyrode's solution. ECG and heart rate were recorded during the entire experiment. We observed that triple I/R-induced bradycardia was associated with the generation of auricular-ventricular blockade during ischemia and non-sustained nodal and ventricular tachycardia during reperfusion. Interestingly, perfusion with Vero-infected medium produced a delay in the reperfusion-induced recovery of heart rate, increased the frequency of tachycardic events and induced ventricular fibrillation. These results suggest that the presence of parasite-shed substances in conditioned media enhances the arrhythmogenic effects that occur during the I/R protocol.
Resumo:
Acute cerebral hemorrhage (ACH) is an important clinical problem that is often monitored and studied with expensive devices such as computed tomography, magnetic resonance imaging, and positron emission tomography. These devices are not readily available in economically underdeveloped regions of the world, emergency departments, and emergency zones. We have developed a less expensive tool for non-contact monitoring of ACH. The system measures the magnetic induction phase shift (MIPS) between the electromagnetic signals on two coils. ACH was induced in 6 experimental rabbits and edema was induced in 4 control rabbits by stereotactic methods, and their intracranial pressure and heart rate were monitored for 1 h. Signals were continuously monitored for up to 1 h at an exciting frequency of 10.7 MHz. Autologous blood was administered to the experimental group, and saline to the control group (1 to 3 mL) by injection of 1-mL every 5 min. The results showed a significant increase in MIPS as a function of the injection volume, but the heart rate was stable. In the experimental (ACH) group, there was a statistically significant positive correlation of the intracranial pressure and MIPS. The change of MIPS was greater in the ACH group than in the control group. This high-sensitivity system could detect a 1-mL change in blood volume. The MIPS was significantly related to the intracranial pressure. This observation suggests that the method could be valuable for detecting early warning signs in emergency medicine and critical care units.
Resumo:
Myoclonus induced by etomidate during induction of general anesthesia is undesirable. This study evaluated the effect of dexmedetomidine (DEX) pretreatment on the incidence and severity of etomidate-induced myoclonus. Ninety patients undergoing elective surgical procedures were randomly allocated to three groups (n=30 each) for intravenous administration of 10 mL isotonic saline (group I), 0.5 µg/kg DEX in 10 mL isotonic saline (group II), or 1.0 µg/kg DEX in 10 mL isotonic saline (group III) over 10 min. All groups subsequently received 0.3 mg/kg etomidate by intravenous push injection. The incidence and severity of myoclonus were recorded for 1 min after etomidate administration and the incidence of cardiovascular adverse events that occurred between the administration of the DEX infusion and 1 min after tracheal intubation was recorded. The incidence of myoclonus was significantly reduced in groups II and III (30.0 and 36.7%), compared with group I (63.3%). The incidence of severe sinus bradycardia was significantly increased in group III compared with group I (P<0.05), but there was no significant difference in heart rate in groups I and II. There were no significant differences in the incidence of low blood pressure among the 3 groups. Pretreatment with 0.5 and 1.0 µg/kg DEX significantly reduced the incidence of etomidate-induced myoclonus during anesthetic induction; however, 0.5 µg/kg DEX is recommended because it had fewer side effects.
Resumo:
Myocardial ischemia, as well as the induction agents used in anesthesia, may cause corrected QT interval (QTc) prolongation. The objective of this randomized, double-blind trial was to determine the effects of high- vs conventional-dose bolus rocuronium on QTc duration and the incidence of dysrhythmias following anesthesia induction and intubation. Fifty patients about to undergo coronary artery surgery were randomly allocated to receive conventional-dose (0.6 mg/kg, group C, n=25) or high-dose (1.2 mg/kg, group H, n=25) rocuronium after induction with etomidate and fentanyl. QTc, heart rate, and mean arterial pressure were recorded before induction (T0), after induction (T1), after rocuronium (just before laryngoscopy; T2), 2 min after intubation (T3), and 5 min after intubation (T4). The occurrence of dysrhythmias was recorded. In both groups, QTc was significantly longer at T3 than at baseline [475 vs 429 ms in group C (P=0.001), and 459 vs 434 ms in group H (P=0.005)]. The incidence of dysrhythmias in group C (28%) and in group H (24%) was similar. The QTc after high-dose rocuronium was not significantly longer than after conventional-dose rocuronium in patients about to undergo coronary artery surgery who were induced with etomidate and fentanyl. In both groups, compared with baseline, QTc was most prolonged at 2 min after intubation, suggesting that QTc prolongation may be due to the nociceptive stimulus of intubation.