132 resultados para Full factorial design
Resumo:
In the present work, the influence of the amount of nitrogen and phosphorus and degrees Brix on the yield and productivity of alcoholic fermentation has been evaluated. The methodology used was factorial design and response surface analysis. Within the range studied only for phosphorus a statistically significant effect was observed. The broth of sugar cane of the CB 453 variety already possessed enough nitrogen for the fermentation. The mathematical and empirical model was validated for productivity and not for yield. The concentration of alcohol produced in the fermentation was not enough to cause cellular growth inhibition.
Resumo:
This work was aimed on optimization of the matrix solid-phase dispersion (MSPD) technique using gas chromatography for analyzing residues of chlorpyriphos, λ-cyhalothrin, cypermethrin and deltamethrin in tomatoes. The results showed that silica was more efficient for the clean up of extracts, but florisil provided the highest recovery rates. A 2³ complete factorial design was carried out to evaluate the absorbent/sample ratio, presence of co-column (silica) and ultrasonic bath on the extraction rate. The percentage of extraction of the pesticides chlorpyriphos, λ-cyhalothrin, cypermethrin and deltamethrin were 64.7, 88.3, 99.2 and 89.2%, respectively, with relative standard deviations below 5%.
Resumo:
The AVS is defined operationally as acid volatile sulfide, which is a controlling phase on the partition of some metallic species in sediments. A Factorial design was evaluated by means of 16 experiments and using four variables: temperature, extraction time, N2 flow, and volume of the S2- collection solution. The factors that contributed to the efficiency of the process were the extraction time and the N2 flow. Trapping of S2- was efficient in AAB. The S2- was quantified using a potentiometric procedure. Recovery tests for S2- concentrations varying from 1×10-5 to 1×10-4 mol L-1 were in the range from 93 to 116%.
Resumo:
Esterification reactions of glycerol with lauric acid in solvent free system were carried out using lipases from several sources. All lipases were immobilized on polysiloxane-polyvinyl alcohol particles by covalent binding with high activity recovered. Among the tested enzymes, the Candida antarctica lipase allowed to attain the highest molar conversion (76%), giving similar proportions of monolaurin, dilaurin and low amount of trilaurin. To further improve the process, the Response Surface Methodology (RSM) was used and optima temperature and molar ratio glycerol to lauric acid were found to be 45 ºC and 5:1, respectively. Under these conditions, 31.35% of monolaurin concentrations were attained and this result was in close agreement with the statistical model prediction.
Resumo:
The effect of sodium nitrate application in the reduction of biogenic sulphide was evaluated through a 2k complete factorial design, using as variable response the production of sulfide at intervals of incubation of 7, 14 and 28 days. The most effective condition for reducing the sulphide production (final concentrations from 0.4 to 1.6 mg S2- L-1) was obtained with an initial population of sulphate-reducing bacteria and nitrate-reducing bacteria of 10(4) MPN mL-1 and 427.5 mg L-1 nitrate. The results also suggested that the applications of nitrate to control the process of souring should follow a continuous scheme.
Resumo:
Different parameters of carbon ceramic electrodes (CCE) preparation, such as type of precursor, carbon material, catalyst amount, among others, significantly influence the morphological properties and consequently their electrochemical responses. This paper describes a 2³ factorial design (2 factors and 3 levels with central point replicates), which the factors analyzed were catalyst amount (HCl 12 mol L-1), graphite/precursor ratio, and precursor type (TEOS - tetraethoxysilane and MTMOS - methyltrimetoxysilane). The design resulted in a significant third order interaction for peak current values (Ipa) and a second order interaction for potential difference (ΔE), between thefactors studied, which could not be observed when using an univariated study.
Resumo:
The decomposition of detergent powder samples in a microwave oven and autoclave was evaluated. To establish the best experimental conditions a 2(5) factorial design was performed, varying the conditions in autoclave and microwave digestion and flow system parameters for the determination of phosphorus. The best composition was: 0.2 mL sulfuric acid; 500 W power and a 2 min time interval; 6 mmol L-1 of ascorbic acid and 16 mmol L-1 of molybdate to flow system. This factor levels use less reagents than the reference method. No statistically significant differences were found between the autoclave and microwave oven responses at the 95% confidence level.
Resumo:
A factorial design applied in a voltammetric stripping method for the measurement of Ag(I) in natural water is described. The procedure is based on the effective pre-concentration of silver ions on electrode surface. The calibration graph was linear in the silver concentration range from 7.92 x 10"7 to 1.07 x 10"5 mol L"1 with a detection limit of 3.81 x 10-7 mol L-1. The determination of Ag(I) in natural water samples was carried out satisfactory with the proposed electrode.
Resumo:
A procedure for the simultaneous determination of Cr, Ni, and V in urine by electrothermal atomic absorption spectrometry (ET AAS) was optimized by factorial design, and performed at a pyrolysis and atomization temperatures of 1300 and 2500 ºC, respectively, using 15 µg de Mg(NO3)2 as chemical modifier. Characteristics mass of 14, 6 and 220 ρg and detection limits of the method of 0.07, 0.38 and 0.75 µg L-1 were obtained for Cr, Ni and V respectively. The methodology was validated using a Liphochek Urine Metals Control sample (Bio-Rad) (P=0.05). The methodology was applied to samples of voluntary Venezuelan people, not environmentally exposed to specific emissions, and results ranging from < LOD-1.1 and 1.3-3.3 µg L-1 was observed for Cr and V, respectively, and not detectable levels for Ni.
Resumo:
Agrochemicals constitute the class of products most commonly found in water resources. Their high level of concentration is due to the fact that less than 0.1% of pesticides applied to crops reach their target. The present work aims to study the sorption of clomazone herbicide (associated or not with nanoparticles). The sorption tests, performed with the 2(4) factorial design, showed that the form of herbicide is the main factor for sorption of clomazone. The application of nanoparticles as delivery system for agrochemicals is a pressing area of study and can contribute for decrease in effects of clomazone in the environment.
Resumo:
In this study, polymeric nanocapsules of PCL containing the herbicide atrazine were prepared. In order to optimize the preparation conditions, a 2³ factorial design was performed using different formulations of nanocapsules, which investigated the influence of three variables at two levels. The factors varied were the quantities of PCL, Span 60 and Myritol. The results were evaluated considering the size, polydispersity, zeta potential and association rate and the measures of these parameters were taken immediately after preparation and after 30 days of preparation. The formulations with minimum level of polymer in the preparation showed better stability results.
Resumo:
This work applied a 2² factorial design to the optimization of the extraction of seven elements (calcium, magnesium, potassium, iron, zinc, copper and manganese) in brachiaria leaves, determined by flame atomic absorption spectrometry. The factors sample mass and digestion type were evaluated at two levels: 200/500 mg, and dry/wet, respectively. Principal component analysis allowed simultaneous discrimination of all the significant effects in one biplot. Wet digestion and mass of 200 mg were considered the best conditions. The decrease of 60% in sample mass allowed to save costs and reagents. The method was validated through the estimation of figures of merit.
Resumo:
Electrocoagulation/flotation process was applied to treat biodiesel wastewater using aluminium electrodes. Firstly, a literature survey was conducted to choose the process variables and then, operational parameters including initial pH, electrode distance and reaction time were tested. Experimental results showed the best parameter that can be used in a factorial design for further studies. The results indicate that electrocoagulation/flotation is very efficient to reduce oil and grease, the effluent was very clear after treatment and small amount of sludge was produced.
Resumo:
This work used green coconut mesocarp as a bioadsorbent to remove Reactive Gray BF-2R dye. A 2³ factorial design was used to evaluate the influence of the variables adsorbent mass, particle size and stirring speed on the adsorptive process. Kinetic and adsorption equilibrium studies were performed. Results showed that the kinetic equilibrium was reached after 150 min. Using the Langmuir model, a q max of 21.9 mg g-1 and k of 0.30 L g-1 was obtained. The mesocarp of coconut, a residue of agribusiness, proved to be an effective alternative technique for the removal of dye in this study.
Resumo:
ABSTRACT Montmorillonite was modified with zirconium polyoxycations in the presence of ammonium sulphate. The material was characterized and used as a catalyst in the esterification of lauric acid, the reactions being accompanied by 2³ factorial design. Conversions of up to 95.33 and 83.35% were observed for the methyl and ethyl esterification reactions respectively, proving superior to results obtained by thermal conversion. The material was submitted to three reaction cycles and similar conversions were observed, indicating the catalyst is not significantly deactivated after reuse. The catalyst was also tested under reflux conditions, yielding a maximum conversion of 36.86%.