149 resultados para Fossé de drainage
Resumo:
Inferior vena cava anomalies are rare, occurring in up to 8.7% of the population, as left renal vein anomalies are considered. The inferior vena cava develops from the sixth to the eighth gestational weeks, originating from three paired embryonic veins, namely the subcardinal, supracardinal and postcardinal veins. This complex ontogenesis of the inferior vena cava, with multiple anastomoses between the pairs of embryonic veins, leads to a number of anatomic variations in the venous return from the abdomen and lower limbs. Some of such variations have significant clinical and surgical implications related to other cardiovascular anomalies and in some cases associated with venous thrombosis of lower limbs, particularly in young adults. The authors reviewed images of ten patients with inferior vena cava anomalies, three of them with deep venous thrombosis. The authors highlight the major findings of inferior vena cava anomalies at multidetector computed tomography and magnetic resonance imaging, correlating them the embryonic development and demonstrating the main alternative pathways for venous drainage. The knowledge on the inferior vena cava anomalies is critical in the assessment of abdominal images to avoid misdiagnosis and to indicate the possibility of associated anomalies, besides clinical and surgical implications.
Resumo:
The mining industry around the world produces an important amount of wastes, which by their high toxic metal and iron sulfide content present a serious environmental problem. Iron sulfide oxidation under weathering conditions provokes the main environmental problem of the mining industry, the generation of Acid Rock Drainage (ARD). Up to now the prediction methodologies do not allow the study of important factors that influence the generation of ARD, producing in some cases erroneous or uncertain conclusions. This paper shows the utilization of cyclic voltammetry using carbon paste electrodes (CPE-Mineral) as an alternative tool in the study of the oxidation capacity of iron sulfides and mining wastes. This electrochemical technique constitutes a novel methodology to establish and understand the factors involved during generation of ARD. Results of several studies including selected sulfide samples and sulfide mining wastes have been described in order to show the capacity of this methodology as a complementary tool in the prediction of the generation of ARD.
Remediação de drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão
Resumo:
Zeolitic material was synthesized from coal fly ashes (baghouse filter fly ash and cyclone filter fly ash) by hydrothermal alkaline activation. The potential application of the zeolitic product for decontamination of waters from acid mine drainage was evaluated. The results showed that a dose of 30 g L-1 of zeolitic material allowed the water to reach acceptable quality levels after treatment. Both precipitation and cation-exchange processes accounted for the reduction in the pollutant concentration in the treated waters.
Resumo:
Copper speciation and behavior in different rivers located in the city of Curitiba were evaluated in this work. Sampling locations were selected to cover different levels of urbanization regarding their anthropogenic occupation and land use. Results showed that in highly-developed areas, both organic matter and dissolved sulfides were able to control copper speciation. Dissolved sulfide species were the major complexing agent in areas where dissolved oxygen levels are low. Finally, it was demonstrated that in urban areas anthropogenic factors such as sewage inputs and occupation of the drainage basin are the key aspects controlling copper dynamics and speciation in river waters.
Resumo:
Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.
Resumo:
Acid mine drainage generated from coal mine showed a pH of 3.2, high concentrations of SO4(2-), Al, Fe, Mn, Zn and minor As, Cd, Co, Cr, Cu, Ni and Pb. The major reduction in the concentration occurred for Al, As, Cr, Fe and Pb after the treatment with CaO. The evolution of these acid waters within the tributary stream showed decreasing concentration for all soluble constituents, except Al. This natural attenuation was controlled by pH (6.4 to 10.8) as a result of concurrent mixing with tributary stream and reaction with local bedrock that contains limestone. Aluminum increasing concentration during this evolution seems to be related to an input of Al-enriched waters due to the leaching of silicate minerals in alkaline conditions.
Resumo:
This study examined the spatial and temporal variations of six important parameters of the salt accumulation process in water samples collected along section urban of Contas River. The Na+, K+, Ca2+ and Mg2+ concentrations were determined by FAAS. The conductivity, total dissolved solids, Na+ and Ca2+ presented the largest seasonal and spatial variations in the urban area demonstrated that are appropriate indicators of urban contamination. The readily soluble salts in drainage urban, contribute for the degradation of the water of rivers located in semi-arid zones.
Resumo:
This study aimed the use of coal mining waste as a new adsorbent for H3O+ and removal of Al (III), Fe (III) and Mn (II) from acid mine drainage. Data from kinetic and equilibrium of the adsorption of H3O+ followed the pseudo second-order and Langmuir isotherm models. The maximum adsorption capacity of H3O+ was 316 mmol kg-1. The adsorbent removed 100% of Al (III), 100% of Fe (III) and 89% of Mn (II), suggesting its use as an alternative for the treatment of acid mine drainage.
Resumo:
Glyphosate was determined in runoff and leaching waters in agricultural soil that received an application of active ingredient and was exposed to simulated intensive rain conditions. The concentrations decreased during the simulation period and the concentrations of the runoff were higher than those achieved in the samples of leaching waters. The concentrations were lower than the pattern in the Brazilian Regulation MS N. 518/2004 for drinking water. The transported load of the applied active ingredient by the leaching was of 15.4% (w/w) and for the runoff was of 1.7% (w/w).
Resumo:
The objective this study was to monitor pesticide residues in groundwater at three different times and in seven regions producing rice in southern Brazil, in the 2007/08 season. Imazethapyr and fipronil were found in all regions studied. All groundwater samples from the Planície Costeira Interna to Lagoa dos Patos and Santa Catarina contained at least one pesticide. The lowest number of contaminated samples were detected in the Southern region. The highest frequency of contaminated samples was found after drainage of the rice fields. Only fipronil exceeded limits of potability, in 27% of samples, according European Community criteria.
Resumo:
The origin of the sedimentary organic matter in the Mundaú-Manguaba estuarine system was evaluated through the distribution and composition of sterols, alcohols and ancillary data. The muddy sediments of the lagoons are enriched in organic matter, derived from a mixture of autochthonous and allochthonous inputs. Mundaú exhibited moderate contamination by sewage, with coprostanol concentration as high as 4.4 µg g-1. The channels are characterized by sand and organic matter-poor sediments. The sediments from some rivers in the drainage basin accumulated organic matter derived only from terrestrial vegetation. Stanol/sterol ratios evidenced the preferential diagenesis of the autochthonous fraction of organic matter.
Resumo:
The use of saline water and the reuse of drainage water for irrigation depend on long-term strategies that ensure the sustainability of socio-economic and environmental impacts of agricultural systems. In this study, it was evaluated the effects of irrigation with saline water in the dry season and fresh water in the rainy season on the soil salt accumulation yield of maize and cowpea, in a crop rotation system. The experiment was conducted in the field, using a randomized complete block design, with five replications. The first crop was installed during the dry season of 2007, with maize irrigated with water of different salinities (0.8, 2.2, 3.6 and 5.0 dS m-1). The maize plants were harvested at 90 days after sowing (DAS), and vegetative growth, dry mass of 1000 seeds and grain yield were evaluated. The same plots were utilized for the cultivation of cowpea, during the rainy season of 2008. At the end of the crop, cycle plants of this species were harvested, being evaluated the vegetative growth and plant yield. Soil samples were collected before and after maize and cowpea cultivation. The salinity of irrigation water above 2.2 dS m-1 reduced the yield of maize during the dry season. The high total rainfall during the rainy season resulted in leaching of salts accumulated during cultivation in the dry season, and eliminated the possible negative effects of salinity on cowpea plants. However, this crop showed atypical behavior with a significant proportion of vegetative mass and low pod production, which reduced the efficiency of this strategy of crop rotation under the conditions of this study.
Resumo:
The use of productivity information and efficiency of water use is important for the economic analysis of production and irrigation management, and also helps the economy of water use, which is essential to plant life. The objective of this study was to evaluate the biomass allocation, the water use efficiency and water content in fruits of sweet pepper cropped under the influence of irrigation blades and potassium doses. The statistic design was a completely randomized factorial scheme (5 x 2) and four replications, with five irrigation blades (80; 90; 100; 110 and 120% of crop evapotranspiration) and two levels of potassium (80 and 120 kg K2O ha-1 ), applied according to phenological phase, through a system of drip irrigation with self-compensated drippers, installed in a battery of 40 drainage lysimeters cultivated with sweet pepper (Maximos F1), at Federal Rural University of Pernambuco (UFRPE), Recife, state of Pernambuco, Brazil. The dry biomass production of sweet pepper was influenced by fertigation regimes; when it was set the lowest dose, estimates of the efficiency of water use and moisture in the fruit occurred with the use of irrigation depth of 97 and 95% of ETc, respectively.
Resumo:
The quantitative knowledge of hydrological parameters (rainfall and flow) and their spatial and temporal variability on the regions or basins should be understood as essential to the efficient planning and management of water resources. Because the Ivinhema Basin, located in the state of Mato Grosso do Sul, Brazil, represents an important inductor on the region agricultural development, characterized as a major producer of grains and meat, it was used to characterize the hydrological study. Knowing the rainfall, flow and drainage area of each of the studied affluent, it was calculated the proportion of contribution of the affluent. To that end, it was proposed the concepts of potential and real contributions, aiming to identify the proportion of contribution of each of the affluent to the formation of the flow in the Ivinhema Basin. The results revealed that: the highest rainfall in the Ivinhema Basin occurred in the headwater regions; the mean specific flow of long duration reduces from the headwater to the mouth of Ivinhema Basin; the Sub-basin of Dorado's River has the highest potential and real contribution for the formation of the Ivinhema Basin flow; and the drainage areas of the affluent Dourados and Vacaria contribute with 53% flow of the basin.
Resumo:
The use conflicts are determined by the inadequate occupations of the soil, as it is the case of soil occupation inside of permanent preservation areas. This study aimed to determine the classes of the soil use and if there are conflicts inside of permanent preservation areas along the drainage network of the Água Fria Stream watershed, located in Bofete city - São Paulo, Brazil. It locates geographically between the coordinates: 48°09'30" to 48°18'30" longitude WGr., 22°58'30" to 23°04'30" latitude S, with an area of 15242.84 ha. The map of soil use was elaborated through the interpretation directly in the computer screen of satellite digital image. In the orbital data, the study area is inserted in the quadrant A, of image TM/Landsat - 5, orbit 220, point 76, passage 9/8th/2007. The Geographical Information System used was CartaLinx. The conflict areas of the watershed were obtained from the crossing between the maps of soil use and of PPAs. The results allowed the conclusion that more than half of the area (51.09%) is occupied by pastures, reflex of sandy soils and low fertility. It was also verified that although almost half of the watershed is covered with some type of vegetation (48.78% of natural forest /reforestation), it has approximately a third of permanent preservation areas used inappropriately by pastures (88.15%), reforestation (10.42%) and exposed soil (1.43%), totaling 343.07ha of conflicting areas, in a total of 993.26 ha of PPAs.