119 resultados para Fish -- Genetics
Resumo:
It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization) technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation) time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide). The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness
Resumo:
Karyological characteristics, i.e., diploid number, chromosome morphology and nucleolus organizer regions (NORs), biochemical characteristics, i.e., electrophoretic analysis of blood hemoglobin and the tissue enzymes lactate dehydrogenase (LDH), malate dehydrogenase (MDH), alcohol dehydrogenase (ADH), and phosphoglucose isomerase (PGI), and physiological characteristics, i.e., relative concentration of hemoglobin and intraerythrocytic concentrations of organic phosphates were analyzed for the species Callophysus macropterus collected from Marchantaria Island (white water system - Solimões River) and Anavilhanas Archipelago (black water system - Negro River). Karyological and biochemical data did not reveal significant differences between specimens collected at the two sites. However, the relative distribution of hemoglobin bands I and III (I = 16.33 ± 1.05 and III = 37.20 ± 1.32 for Marchantaria specimens and I = 6.33 ± 1.32 and III = 48.05 ± 1.55 for Anavilhanas specimens) and levels of intraerythrocytic GTP (1.32 ± 0.16 and 2.76 ± 0.18 for Marchantaria and Anavilhanas specimens, respectively), but not ATP or total phosphate, were significantly different, indicating a physiological adaptation to the environmental conditions of these habitats. It is suggested that C. macropterus specimens from the two collecting sites belong to a single population, and that they adjusted some physiological characteristics to adapt to local environmental conditions.
Resumo:
Technical problems have hampered the study of sleep in teleosts. The electrical discharges of Gymnotus carapo L. (Gymnotidae: Gymnotiformes) were monitored to evaluate their ease and reliability as parameters to study sleep. The discharges were detected by electrodes immersed in a glass aquarium and were recorded on a conventional polygraph. G. carapo showed conspicuous signs of behavioral sleep. During these periods, opercular beat rates were counted, electric discharges recorded, and the "sharp discharge increase" (SDI) of the orienting reflex was investigated. All 20 animals monitored maintained electrical discharges during behavioral sleep. The discharge frequencies during sleep (50.3 ± 10.4 Hz) were not significantly different from those observed when the fish was awake and inactive (57.2 ± 12.1 Hz) (Wilcoxon matched-pairs signed-ranks test, P>0.05). However, the SDI, which was prevalent in the awake fish, was not observed during periods of behavioral sleep. Additional observations showed that the species had cannibalistic habits. When presented with electrical discharges from a conspecific, the sleeping fish showed an initial decrease or pause in discharge frequency, while the awake fish did not have this response. We conclude that the electrical discharges of G. carapo were not conspicuous indicators of behavioral sleep. Discharges may have been maintained during sleep for sensory purposes, i.e., conspecific detection and avoidance of cannibalistic attacks.
Resumo:
The livers of Geophagus brasiliensis collected from both a non-polluted site and a polluted site were analyzed for different antioxidant defenses, O2 consumption, thiobarbituric acid-reactive substance (TBARS) levels, and histological damage. Compared to controls (116.6 ± 26.1 nmol g-1), TBARS levels were enhanced at the polluted site (284.2 ± 25.6 nmol g-1), as also was oxygen consumption (86.6 ± 11.3 and 128.5 ± 9.8 µmol O2 min-1 g-1, respectively). With respect to enzymatic antioxidants, increased catalase activities (8.7 ± 1.3 and 29.2 ± 2.4 mmol min-1 g-1, respectively), unchanged superoxide dismutase activities (767.2 ± 113.3 and 563.3 ± 70.2 U g-1, respectively), and diminished glutathione S-transferase activities (29.0 ± 3.2 and 14.9 ± 3.2 µmol min-1 g-1, respectively) were detected. Reduced glutathione (1.91 ± 0.17 and 1.37 ± 0.25 mM, respectively), oxidized glutathione (1.50 ± 0.20 and 0.73 ± 0.17 mM, respectively), and total glutathione (3.40 ± 0.26 and 2.07 ± 0.27 mM, respectively) concentrations were also below control values at the polluted site. Nevertheless, the observed ethoxyresorufin-O-deethylase activities (1.34 ± 0.11 and 16.7 ± 0.21 pmol min-1 mg-1, respectively) showed enhanced values at the polluted site. The main histological damage observed in the hepatocytes from fish collected at the polluted site was characterized by heavy lipid infiltration. Fish collected at the end of spring showed higher O2 consumption, higher superoxide dismutase and glutathione S-transferase activities, and higher total and oxidized glutathione concentrations compared to the beginning of autumn. No seasonal changes were observed in catalase activities, glutathione or TBARS levels. Fish chronically exposed to relatively high pollution levels seem to be unable to set up adequate antioxidant defenses, probably due to severe injury to their hepatocytes. The higher antioxidant defenses found at the end of spring are probably related to the enhanced activities during high temperature periods in thermoconforming organisms.
Resumo:
The present study aimed to test the effects of blue, green or white light on the stress response of the Nile tilapia, Oreochromis niloticus (L.). Each color was tested on two groups of isolated adult Nile tilapia (8 replicates each): one being subjected to confinement stress, and the other not (control). A different environmental color was imposed on each compartment by covering the light source with cellophane of the respective color (green or blue; no cellophane was used for white light). The intensity of green, white and blue lights was 250, 590 and 250 lux, respectively. Basal plasma cortisol levels were determined for each fish prior to the experimental procedures. The fish were confined by being displaced toward one side of the aquarium using an opaque partition for 1 h both in the morning and the afternoon of the two consecutive days of the test. At the end of this 48-h period, plasma cortisol levels were measured again. Basal cortisol levels (ng/ml) were similar for each group (ANOVA, F(2;42) = 0.77, P = 0.47). Thus, plasma cortisol levels were analyzed in terms of variation from their respective basal level. After confinement, plasma cortisol levels were not increased in fish submitted to a blue light environment. Thus, blue light prevents the confinement-induced cortisol response, an effect not necessarily related to light intensity.
Resumo:
The exposure of fish to air is normally expected to interfere with the nitrogen excretion process. Hoplias malabaricus and Hoplerythrinus unitaeniatus, two teleost species, display distinct behaviors in response to decreases in natural reservoir water levels, although they may employ similar biochemical strategies. To investigate this point, plasma levels of ammonia, urea, uric acid, and the two urea cycle enzymes, ornithine carbamoyl transferase (OCT) and arginase (ARG), as well as glutamine synthetase (GS) were determined for both species after exposure to air. Plasma ammonia increased gradually during exposure to air, but only H. malabaricus showed increased concentrations of urea. Plasma uric acid remained very low in both fish. Enzymatic activities (mean ± SD, µmol min-1 g protein-1) of H. malabaricus showed significant increases (P<0.05, N = 6) in OCT from 0.84 ± 0.05 to 1.42 ± 0.03, in ARG from 8.07 ± 0.47 to 9.97 ± 0.53 and in GS from 1.15 ± 0.03 to 2.39 ± 0.04. The OCT and ARG enzymes remained constant in H. unitaeniatus (N = 6), but GS increased from 1.49 ± 0.02 to 2.06 ± 0.03. Although these species are very closely related and share the same environment, their biochemical strategies in response to exposure to air or to increased plasma ammonia are different.
Resumo:
We investigated the association of eye color with the dominant-subordinate relationship in the fish Nile tilapia, Oreochromis niloticus. Eye color pattern was also examined in relation to the intensity of attacks. We paired 20 size-matched fish (intruder: 73.69 ± 11.49 g; resident: 75.42 ± 8.83 g) and evaluated eye color and fights. These fish were isolated in individual aquaria for 10 days and then their eye color was measured 5 min before pairing (basal values). Twenty minutes after pairing, eye color and fights were quantified for 10 min. Clear establishment of social hierarchy was observed in 7 of 10 pairs of fish. Number of attacks ranged from 1 to 168 among pairs. The quartile was calculated for these data and the pairs were then divided into two classes: low-attack (1 to 111 attacks - 2 lower quartiles) or high-attack (112 to 168 attacks - 2 higher quartiles). Dominance decreased the eye-darkening patterns of the fish after pairing, while subordinance increased darkening compared to dominance. Subordinate fish in low-attack confrontations presented a darker eye compared to dominant fish and to the basal condition. We also observed a paler eye pattern in dominants that shared low-attack interactions after pairing compared to the subordinates and within the group. However, we found no differences in the darkening pattern between dominants and subordinates from the high-attack groups. We conclude that eye color is associated with social rank in this species. Moreover, the association between eye color and social rank in the low-attack pairs may function to reduce aggression.
Resumo:
In the present study we determined the effect of chronic diet supplementation with n-3 PUFA on renal function of healthy and cachectic subjects by providing fish oil (1 g/kg body weight) to female rats throughout pregnancy and lactation and then to their offspring post-weaning and examined its effect on renal function parameters during their adulthood. The animals were divided into four groups of 5-10 rats in each group: control, control supplemented with fish oil (P), cachectic Walker 256 tumor-bearing (W), and W supplemented with fish oil (WP). Food intake was significantly lower in the W group compared to control (12.66 ± 4.24 vs 25.30 ± 1.07 g/day). Treatment with fish oil significantly reversed this reduction (22.70 ± 2.94 g/day). Tumor growth rate was markedly reduced in the P group (16.41 ± 2.09 for WP vs 24.06 ± 2.64 g for W). WP group showed a significant increase in mean glomerular filtration rate compared to P and control (1.520 ± 0.214 ml min-1 kg body weight-1; P < 0.05). Tumor-bearing groups had low urine osmolality compared to control rats. The fractional sodium excretion decreased in the W group compared to control (0.43 ± 0.16 vs 2.99 ± 0.87%; P < 0.05), and partially recovered in the WP group (0.90 ± 0.20%). In summary, the chronic supplementation with fish oil used in this study increased the amount of fat in the diet by only 0.1%, but caused remarkable changes in tumor growth rate and cachexia, also showing a renoprotective function.
Resumo:
To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 µg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-alphaprotein kinase C (alphaPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and alphaPKC (alphaPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and alphaPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 µg/g) showed significant reduction of the ON-bipolar alphaPKC-IR cell density (mean density = 1306 ± 393 cells/mm²) compared to control (1886 ± 892 cells/mm²; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 ± 56 cells/mm² (2 µg/g) and 845 ± 82 cells/mm² (6 µg/g), also lower than control (1312 ± 31 cells/mm²; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of alphaKC-IR bipolar cells at the dose of 6 µg/g. Further studies are needed to identify the physiological impact of these findings on visual function.
Resumo:
Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 µL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 ± 2.7 and 3.8 ± 2.0 Hz, P < 0.05) and persisted until 10 min (11 ± 5.7 and 8.7 ± 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.
Resumo:
Methyl mercury (MeHg) is highly neurotoxic, affecting visual function in addition to other central nervous system functions. The effect of mercury intoxication on the amplitude of horizontal cell responses to light was studied in the retina of the fish Hoplias malabaricus. Intracellular responses were recorded from horizontal cells of fish previously intoxicated with MeHg by intraperitoneal injection (IP group) or by trophic exposure (T group). Only one retina per fish was used. The doses of MeHg chloride administered to the IP group were 0.01, 0.05, 0.1, 1.0, 2.0, and 6.0 mg/kg. The amplitudes of the horizontal cell responses were lower than control in individuals exposed to 0.01 (N = 4 retinas), 0.05 (N = 2 retinas) and 0.1 mg/kg (N = 1 retina), whereas no responses were recorded in the 1.0, 2.0, and 6.0 mg/kg groups. T group individuals were fed young specimens of Astyanax sp previously injected with MeHg corresponding to 0.75 (N = 1 retina), 0.075 (N = 8 retinas) or 0.0075 (N = 4 retinas) mg/kg fish body weight. After 14 doses, one every 5 days, the amplitude of the horizontal cell response was higher than control in individuals exposed to 0.075 and 0.0075 mg/kg, and lower in individuals exposed to 0.75 mg/kg. We conclude that intoxication with MeHg affects the electrophysiological response of the horizontal cells in the retina, either reducing or increasing its amplitude compared to control, and that these effects are related to the dose and/or to the mode of administration.
Resumo:
Plasma cortisol and glucose levels were measured in 36 adult Nile tilapia males, Oreochromis niloticus (standard length, mean ± SD, 14.38 ± 1.31 cm), subjected to electroshock and social stressors. Pre-stressor levels were determined 5 days after the adjustment of the fish to the experimental aquaria (1 fish/aquarium). Five days later, the effects of stressors on both cortisol and glucose levels were assessed. The following stressors were imposed for 60 min: pairing with a larger resident animal (social stressor), or a gentle electroshock (AC, 20 V, 15 mA, 100 Hz for 1 min every 4 min). Each stressor was tested in two independent groups, one in which stress was quantified immediately after the end of the 60-min stressor imposition (T60) and the other in which stress was quantified 30 min later (T90). Pre-stressor values for cortisol and glucose were not statistically different between groups. Plasma cortisol levels increased significantly and were of similar magnitude for both electroshock and the social stressor (mean ± SD for basal and final samples were: electroshock T60 = 65.47 ± 15.3, 177.0 ± 30.3; T90 = 54.8 ± 16.0, 196.2 ± 57.8; social stress T60 = 47.1 ± 9.0, 187.6 ± 61.7; T90 = 41.6 ± 8.1, 112.3 ± 26.8, respectively). Plasma glucose levels increased significantly for electroshock at both time points (T60 and T90), but only at T90 for the social stressor. Initial and final mean (± SD) values are: electroshock T60 = 52.5 ± 9.2, 115.0 ± 15.7; T90 = 35.5 ± 1.1, 146.3 ± 13.3; social stress T60 = 54.8 ± 8.8, 84.4 ± 15.0; T90 = 34.5 ± 5.6, 116.3 ± 13.6, respectively. Therefore, electroshock induced an increase in glucose more rapidly than did the social stressor. Furthermore, a significant positive correlation between cortisol and glucose was detected only at T90 for the social stressor. These results indicate that a fish species responds differently to different stressors, thus suggesting specificity of fish stress response to a stressor.
Resumo:
Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta) and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemical strategies to adapt to the changing environmental gas availability. Structurally, most fish hemoglobins are tetrameric; however, those from some species such as lamprey and hagfish dissociate, being monomeric when oxygenated and oligomeric when deoxygenated. Fish blood frequently possesses several hemoglobins; the primary origin of this finding lies in the polymorphism that occurs in the globin loci, an aspect that may occasionally confer advantages to its carriers or even be a harmless evolutionary remnant. On the other hand, the functional properties exhibit different behaviors, ranging from a total absence of responses to allosteric regulation to drastic ones, such as the Root effect.
Resumo:
Myelodysplastic syndrome (MDS) patients with a normal karyotype constitute a heterogeneous group from a biological standpoint and their outcome is often unpredictable. Interphase fluorescence in situ hybridization (I-FISH) studies could increase the rate of detection of abnormalities, but previous reports in the literature have been contradictory. We performed I-FISH and conventional karyotyping (G-banding) on 50 MDS patients at diagnosis, after 6 and 12 months or at any time if a transformation to acute myeloid leukemia (AML) was detected. Applying a probe-panel targeting the centromere of chromosomes 7 and 8, 5q31, 5p15.2 and 7q31, we observed one case with 5q deletion not identified by G-banding. I-FISH at 6 and 12 months confirmed the karyotype results. Eight cases transformed to AML during follow-up, but no hidden clone was detected by I-FISH in any of them. The inclusion of I-FISH during follow-up of MDS resulted in a small improvement in abnormality detection when compared with conventional G-banding.