120 resultados para Endothelial Dysfunction
Resumo:
Ten male, 12-month-old Jersey with intact spleens, serologically and parasitologically free from Babesia were housed individually in an arthropod-free isolation system from birth and throughout entire experiment. The animals were randomly divided into two groups. Five animals (group A) were intravenously inoculated with 6.6 X10(7) red blood cells parasitized with pathogenic sample of Babesia bovis (passage 7 BboUFV-1), for the subsequent "ex vivo" determination of the expression of adhesion molecules. Five non-inoculated animals (group B) were used as the negative control. The expression of the adhesion molecules ICAM-1, VCAM, PECAM-1 E-selectin and thrombospondin (TSP) was measured in bovine umbilical vein endothelial cells (BUVECs). The endothelial cells stimulated with a pool of plasma from animals infected with the BboUFV-1 7th passage sample had a much more intense immunostaining of ICAM-1, VCAM, PECAM-1 E-selectin and TSP, compared to the cells which did not received the stimulus. The results suggest that proinflammatory cytokines released in the acute phase of babesiosis may be involved in the expression of adhesion molecules thereby implicating them in the pathophysiology of babesiosis caused by B. bovis.
Resumo:
Several investigators have demonstrated that streptozotocin (STZ) diabetes induces changes in the autonomic control of the cardiovascular system. Changes in cardiovascular function may be related to peripheral neuropathy. The aim of the present study was to analyze changes in heart rate (HR) and arterial pressure (AP) as well as baroreflex and chemoreflex sensitivity in STZ-induced diabetic male Wistar rats (STZ, 50 mg/kg, iv, 15 days). Intra-arterial blood pressure signals were obtained for control and diabetic rats (N = 9, each group). Data were processed in a data acquisition system (CODAS, 1 kHz). Baroreflex sensitivity was evaluated by measuring heart rate changes induced by arterial pressure variation produced by phenylephrine and sodium nitroprusside injection. Increasing doses of potassium cyanide (KCN) were used to evaluate bradycardic and pressor responses evoked by chemoreflex activation. STZ induced hyperglycemia (447 ± 49 vs 126 ± 3 mg/dl), and a reduction in AP (99 ± 3 vs 118 ± 2 mmHg), resting HR (296 ± 11 vs 355 ± 16 bpm) and plasma insulin levels (16 ± 1 vs 57 ± 11 µU/ml). We also observed that the reflex bradycardia (-1.68 ± 0.1 vs -1.25 ± 0.1 bpm/mmHg, in the diabetic group) and tachycardia (-3.68 ± 0.5 vs -1.75 ± 0.3 bpm/mmHg, in the diabetic group) produced by vasopressor and depressor agents were impaired in the diabetic group. Bradycardia evoked by chemoreflex activation was attenuated in diabetic rats (control: -17 ± 1, -86 ± 19, -185 ± 18, -208 ± 17 vs diabetic: -7 ± 1, -23 ± 5, -95 ± 13, -140 ± 13 bpm), as also was the pressor response (control: 6 ± 1, 30 ± 7, 54 ± 4, 59 ± 5 vs diabetic: 6 ± 1, 8 ± 2, 33 ± 4, 42 ± 5 mmHg). In conclusion, the cardiovascular responses evoked by baroreflex and chemoreflex activation are impaired in diabetic rats. The alterations of cardiovascular responses may be secondary to the autonomic dysfunction of cardiovascular control
Resumo:
Since the most characteristic feature of paraquat poisoning is lung damage, a prospective controlled study was performed on excised rat lungs in order to estimate the intensity of lesion after different doses. Twenty-five male, 2-3-month-old non-SPF Wistar rats, divided into 5 groups, received paraquat dichloride in a single intraperitoneal injection (0, 1, 5, 25, or 50 mg/kg body weight) 24 h before the experiment. Static pressure-volume (PV) curves were performed in air- and saline-filled lungs; an estimator of surface tension and tissue works was computed by integrating the area of both curves and reported as work/ml of volume displacement. Paraquat induced a dose-dependent increase of inspiratory surface tension work that reached a significant two-fold order of magnitude for 25 and 50 mg/kg body weight (P<0.05, ANOVA), sparing lung tissue. This kind of lesion was probably due to functional abnormalities of the surfactant system, as was shown by the increase in the hysteresis of the paraquat groups at the highest doses. Hence, paraquat poisoning provides a suitable model of acute lung injury with alveolar instability that can be easily used in experimental protocols of mechanical ventilation
Resumo:
Patients with sickle cell anemia (Hb SS) or sickle cell trait (Hb AS) may present several types of renal dysfunction; however, comparison of the prevalence of these abnormalities between these two groups and correlation with the duration of disease in a large number of patients have not been thoroughly investigated. In a cross-sectional study using immunoenzymometric assays to measure tubular proteinuria, microalbuminuria, measurement of creatinine clearance, urinary osmolality and analysis of urine sediment, we evaluated glomerular and tubular renal function in 106 adults and children with Hb SS (N = 66) or Hb AS (N = 40) with no renal failure (glomerular filtration rate (GFR) >85 ml/min). The percentage of individuals with microalbuminuria was higher among Hb SS than among Hb AS patients (30 vs 8%, P<0.0001). The prevalence of microhematuria was similar in both groups (26 vs 30%, respectively). Increased urinary levels of retinol-binding protein or ß2-microglobulin were detected in only 3 Hb SS and 2 Hb AS patients. Urinary osmolality was reduced in patients with Hb SS or with Hb AS; however, it was particularly evident in Hb SS patients older than 15 years (median = 393 mOsm/kg, range = 366-469) compared with Hb AS patients (median = 541 mOsm/kg, range = 406-722). Thus, in addition to the frequently reported early reduction of urinary osmolality and increased GFR, nondysmorphic hematuria was found in 26 and 30% of patients with Hb SS or Hb AS, respectively. Microalbuminuria is an important marker of glomerular injury in patients with Hb SS and may also be demonstrated in some Hb AS individuals. Significant proximal tubular dysfunction is not a common feature in Hb SS and Hb AS population at this stage of the disease (i.e., GFR >85 ml/min).
Resumo:
This review explores advances in our understanding of the intracellular regulation of the endothelial isoform of nitric oxide synthase (eNOS) in the context of its dynamically regulated subcellular targeting. Nitric oxide (NO) is a labile molecule, and may play important biological roles both within the cell in which it is synthesized and in its interactions with nearby cells and molecules. The localization of eNOS within the cell importantly influences the biological role and chemical fate of the NO produced by the enzyme. eNOS, a Ca2+/calmodulin-dependent enzyme, is subject to a complex pattern of intracellular regulation, including co- and post-translational modifications and interactions with other proteins and ligands. In endothelial cells and cardiac myocytes eNOS is localized in specialized plasmalemmal signal-transducing domains termed caveolae; acylation of the enzyme by the fatty acids myristate and palmitate is required for targeting of the protein to caveolae. Targeting to caveolae facilitates eNOS activation following receptor stimulation. In resting cells, eNOS is tonically inhibited by its interactions with caveolin, the scaffolding protein in caveolae. However, following agonist activation, eNOS dissociates from caveolin, and nearly all the eNOS translocates to structures within the cell cytosol; following more protracted incubations with agonists, most of the cytosolic enzyme subsequently translocates back to the cell membrane. The agonist-induced internalization of eNOS is completely abrogated by chelation of intracellular Ca2+. These rapid receptor-mediated effects are seen not only for "classic" eNOS agonists such as bradykinin, but also for estradiol, indicating a novel non-genomic role for estrogen in eNOS activation. eNOS targeting to the membrane is labile, and is subject to receptor-regulated Ca2+-dependent reversible translocation, providing another point for regulation of NO-dependent signaling in the vascular endothelium.
Effects of exercise training on autonomic and myocardial dysfunction in streptozotocin-diabetic rats
Resumo:
Several investigators have demonstrated that diabetes is associated with autonomic and myocardial dysfunction. Exercise training is an efficient non-pharmacological treatment for cardiac and metabolic diseases. The aim of the present study was to investigate the effects of exercise training on hemodynamic and autonomic diabetic dysfunction. After 1 week of diabetes induction (streptozotocin, 50 mg/kg, iv), male Wistar rats (222 ± 5 g, N = 18) were submitted to exercise training for 10 weeks on a treadmill. Arterial pressure signals were obtained and processed with a data acquisition system. Autonomic function and intrinsic heart rate were studied by injecting methylatropine and propranolol. Left ventricular function was assessed in hearts perfused in vitro by the Langendorff technique. Diabetes (D) bradycardia and hypotension (D: 279 ± 9 bpm and 91 ± 4 mmHg vs 315 ± 11 bpm and 111 ± 4 mmHg in controls, C) were attenuated by training (TD: 305 ± 7 bpm and 100 ± 4 mmHg). Vagal tonus was decreased in the diabetic groups and sympathetic tonus was similar in all animals. Intrinsic heart rate was lower in D (284 ± 11 bpm) compared to C and TD (390 ± 8 and 342 ± 14 bpm, respectively). Peak systolic pressure developed at different pressures was similar for all groups, but +dP/dt max was decreased and -dP/dt max was increased in D. In conclusion, exercise training reversed hypotension and bradycardia and improved myocardial function in diabetic rats. These changes represent an adaptive response to the demands of training, supporting a positive role of physical activity in the management of diabetes.
Resumo:
The anticlotting and antithrombotic activities of heparin, heparan sulfate, low molecular weight heparins, heparin and heparin-like compounds from various sources used in clinical practice or under development are briefly reviewed. Heparin isolated from shrimp mimics the pharmacological activities of low molecular weight heparins. A heparan sulfate from Artemia franciscana and a dermatan sulfate from tuna fish show a potent heparin cofactor II activity. A heparan sulfate derived from bovine pancreas has a potent antithrombotic activity in an arterial and venous thrombosis model with a negligible activity upon the serine proteases of the coagulation cascade. It is suggested that the antithrombotic activity of heparin and other antithrombotic agents is due at least in part to their action on endothelial cells stimulating the synthesis of an antithrombotic heparan sulfate.
Resumo:
There are few population-based studies of renal dysfunction and none conducted in developing countries. In the present study the prevalence and predictors of elevated serum creatinine levels (SCr > or = 1.3 mg/dl for men and 1.1 mg/dl for women) were determined among Brazilian adults (18-59 years) and older adults (>60 years). Participants included all older adults (N = 1742) and a probabilistic sample of adults (N = 818) from Bambuí town, MG, Southeast Brazil. Predictors were investigated using multiple logistic regression. Mean SCr levels were 0.77 ± 0.15 mg/dl for adults, 1.02 ± 0.39 mg/dl for older men, and 0.81 ± 0.17 mg/dl for older women. Because there were only 4 cases (0.48%) with elevated SCr levels among adults, the analysis of elevated SCr levels was restricted to older adults. The overall prevalence of elevated SCr levels among the elderly was 5.09% (76/1494). The prevalence of hypercreatinemia increased significantly with age (chi² = 26.17, P = 0.000), being higher for older men (8.19%) than for older women (5.29%, chi² = 5.00, P = 0.02). Elevated SCr levels were associated with age 70-79 years (odds ratio [OR] = 2.25, 95% confidence interval [CI]: 1.15-4.42), hypertension (OR = 3.04, 95% CI: 1.34-6.92), use of antihypertensive drugs (OR = 2.46, 95% CI: 1.26-4.82), chest pain (OR = 3.37, 95% CI: 1.31-8.74), and claudication (OR = 3.43, 95% CI: 1.30-9.09) among men, and with age >80 years (OR = 4.88, 95% CI: 2.24-10.65), use of antihypertensive drugs (OR = 4.06, 95% CI: 1.67-9.86), physical inactivity (OR = 2.11, 95% CI: 1.11-4.02) and myocardial infarction (OR = 3.89, 95% CI: 1.58-9.62) among women. The prevalence of renal dysfunction observed was much lower than that reported in other population-based studies, but predictors were similar. New investigations are needed to confirm the variability in prevalence and associated factors of renal dysfunction among populations.
Resumo:
The medical records of ten pediatric patients with a clinical diagnosis of tetanus were reviewed retrospectively. The heart rate and blood pressure of all tetanus patients were measured noninvasively every hour during the first two weeks of hospitalization. Six of ten tetanus patients presented clinical evidence of sympathetic hyperactivity (group A) and were compared with a control group consisting of four children who required mechanical ventilation for diseases other than tetanus (group B). Heart rate and blood pressure simultaneously and progressively increased to a maximum by day 7. The increase over baseline was 43.70 ± 11.77 bpm (mean ± SD) for heart rate (P<0.01) and 38.60 ± 26.40 mmHg for blood pressure (P<0.01). These values were higher and significantly different from those of the control group (group B) at day 6, which had an average heart rate increase over baseline of 19.35 ± 12.26 bpm (P<0.05) and blood pressure of 10.24 ± 13.30 mmHg (P<0.05). By the end of the second week of hospitalization, in group A the increase of systolic blood pressure over baseline had diminished to 9.60 ± 15.37 mmHg (P<0.05), but the heart rate continued to be elevated (27.80 ± 33.92 bpm, P = NS), when compared to day 7 maximal values. The dissociation of these two cardiovascular variables at the end of the second week of hospitalization suggests the presence of asymmetric cardiac and vascular sympathetic control. One possible explanation for these observations is a selective and delayed action of tetanus toxin on the inhibitory neurons which control sympathetic outflow to the heart.
Resumo:
Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.
Resumo:
The present study was designed to determine relaxation in response to 17ß-estradiol by isolated perfused hearts from intact normotensive male and female rats as well as the contribution of endothelium and its relaxing factors to this action. Baseline coronary perfusion pressure was determined and the vasoactive effects of 17ß-estradiol (10 µM) were assessed by in bolus administration before and after endothelium denudation by infusion of 0.25 µM sodium deoxycholate or perfusion with 100 µM L-NAME, 2.8 µM indomethacin, 0.75 µM clotrimazole, 100 µM L-NAME plus 2.8 µM indomethacin, and 100 µM L-NAME plus 0.75 µM clotrimazole. Baseline coronary perfusion pressure differed significantly between males (84 ± 2 mmHg, N = 61) and females (102 ± 2 mmHg, N = 61). Bolus injection of 10 µM 17ß-estradiol elicited a transient relaxing response in all groups, which was greater in coronary beds from females. For both sexes, the relaxing response to 17ß-estradiol was at least in part endothelium-dependent. In the presence of the nitric oxide synthase inhibitor L-NAME, the relaxing response to 17ß-estradiol was reduced only in females. Nevertheless, in the presence of indomethacin, a cyclooxygenase inhibitor, or clotrimazole, a cytochrome P450 inhibitor, the 17ß-estradiol response was significantly reduced in both groups. In addition, combined treatment with L-NAME plus indomethacin or L-NAME plus clotrimazole also reduced the 17ß-estradiol response in both groups. These results indicate the importance of prostacyclin and endothelium-derived hyperpolarizing factor in the relaxing response to 17ß-estradiol. 17ß-estradiol-induced relaxation may play an important role in the regulation of coronary tone and this may be one of the reasons why estrogen replacement therapy reduces the risk of coronary heart disease in postmenopausal women.
Resumo:
Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean ± SD): 58.9 ± 8.2; FR: 50.8 ± 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 ± 379; FR: 3555 ± 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 ± 16; FR: 149 ± 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 ± 9; FR: 150 ± 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 ± 1.6; FR: 9.2 ± 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 ± 16.5; FR: 68.2 ± 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.
Resumo:
Streptozotocin (STZ)-induced diabetes in rats is characterized by cardiovascular dysfunction beginning 5 days after STZ injection, which may reflect functional or structural autonomic nervous system damage. We investigated cardiovascular and autonomic function, in rats weighing 166 ± 4 g, 5-7, 14, 30, 45, and 90 days after STZ injection (N = 24, 33, 27, 14, and 13, respectively). Arterial pressure (AP), mean AP (MAP) variability (standard deviation of the mean of MAP, SDMMAP), heart rate (HR), HR variability (standard deviation of the normal pulse intervals, SDNN), and root mean square of successive difference of pulse intervals (RMSSD) were measured. STZ induced increased glycemia in diabetic rats vs control rats. Diabetes reduced resting HR from 363 ± 12 to 332 ± 5 bpm (P < 0.05) 5 to 7 days after STZ and reduced MAP from 121 ± 2 to 104 ± 5 mmHg (P = 0.007) 14 days after STZ. HR and MAP variability were lower in diabetic vs control rats 30-45 days after STZ injection (RMSSD decreased from 5.6 ± 0.9 to 3.4 ± 0.4 ms, P = 0.04 and SDMMAP from 6.6 ± 0.6 to 4.2 ± 0.6 mmHg, P = 0.005). Glycemia was negatively correlated with resting AP and HR (r = -0.41 and -0.40, P < 0.001) and with SDNN and SDMMAP indices (r = -0.34 and -0.49, P < 0.01). Even though STZ-diabetic rats presented bradycardia and hypotension early in the course of diabetes, their autonomic function was reduced only 30-45 days after STZ injection and these changes were negatively correlated with plasma glucose, suggesting a metabolic origin.
Resumo:
The biologic basis of the negative prognosis of plasmablastic myeloma is not fully understood. To determine whether histologically aggressive multiple myeloma (MM) is associated with a more angiogenic marrow environment, bone marrow samples from 50 recently diagnosed MM patients were evaluated. Twelve percent (6/50) of patients presented plasmablastic MM, and this feature correlated with moderate/strong intensity of vascular endothelial growth factor staining of plasma cells (P = 0.036). Although plasmablastic MM was not associated with increasing of microvessel density, this new evidence of increased expression of vascular endothelial growth factor on plasmablasts suggests that the adverse prognosis conferred by plasmablastic disease may be due, at least in part, to secretion of this angiogenic cytokine, also suggesting that the subset of MM patients with plasmablastic features may derive particular benefit from antiangiogenic therapies.
Resumo:
Oxidative stress and hepatic mitochondria play a role in the pathogenesis of nonalcoholic fatty liver disease. The aim of the present study was to evaluate the role of hepatic mitochondrial dysfunction and oxidative stress in the pathogenesis of the disease. Fatty liver was induced in Wistar rats with a choline-deficient diet (CD; N = 7) or a high-fat diet enriched with PUFAs-omega-3 (H; N = 7) for 4 weeks. The control group (N = 7) was fed a standard diet. Liver mitochondrial oxidation and phosphorylation were measured polarographically and oxidative stress was estimated on the basis of malondialdehyde and glutathione concentrations. Moderate macrovacuolar liver steatosis was observed in the CD group and mild liver steatosis was observed in the periportal area in the H group. There was an increase in the oxygen consumption rate by liver mitochondria in respiratory state 4 (S4) and a decrease in respiratory control rate (RCR) in the CD group (S4: 32.70 ± 3.35; RCR: 2.55 ± 0.15 ng atoms of O2 min-1 mg protein-1) when compared to the H and control groups (S4: 23.09 ± 1.53, 17.04 ± 2.03, RCR: 3.15 ± 0.15, 3.68 ± 0.15 ng atoms of O2 min-1 mg protein-1, respectively), P < 0.05. Hepatic lipoperoxide concentrations were significantly increased and the concentration of reduced glutathione was significantly reduced in the CD group. A choline-deficient diet causes moderate steatosis with disruption of liver mitochondrial function and increased oxidative stress. These data suggest that lipid peroxidation products can impair the flow of electrons along the respiratory chain, causing overreduction of respiratory chain components and enhanced mitochondrial reactive oxygen species. These findings are important in the pathogenesis of nonalcoholic fatty liver disease.