190 resultados para Developmental stages
Resumo:
ABSTRACT The smallnose fanskate, Sympterygia bonapartii Müller & Henle, 1841 is one of the most disembarked items in commercial harbors in Argentina. In this work, the microscopic architecture of mature male gonads and the dynamics of cysts development are analyzed as a contribution to awareness of the reproductive biology of the species. Some biological data related to reproduction are given as well. Two seasons were sampled (fall and spring) and length classes's frequency distribution and maturity stages frequency distribution are given. Size at first sexual maturation for males was estimated at 57 cm of total length. Testes are symmetric, peer, lobed, with several germinal zones. Inside the gonads, there are many spermatocysts, containing reproductive cells at the same developmental stage. On the basis of their cytological and microanatomical features, several maturative degrees of the spermatogenic series were differentiated. Few Leydig cells were recognized at the interstitial tissue among cysts. The microscopic and semiquantitative analysis performed in this work provides morphological information about male gametogenesis and some biological data for the North Patagonian population of this economically and ecologically important species.
Resumo:
ABSTRACT The biology and morphology of the immature stages of Heliconius sara apseudes (Hübner, [1813]) are still little known. External features of the egg, larvae and pupa of H. sara apseudes are described and illustrated, based upon light and scanning electron microscopy. Eggs with smooth carina, first instar larva with scaly setae, and body of second to fifth instars covered with scattered pinnacles distinguish H. sara apseudes from other heliconiine species.
Resumo:
Under laboratory conditions, the development from egg to adult of P. wellcomei takes an average of 42 days. The larval tages are similar to those of P. arthuri, described by barretto (1941), but can be distinguished from this species by the ratio of the first to second antennal segment, by the form of the lateral head seate and prothoracic dorsolateral setae. The pupal stage of P. wellcomei is characterized by a trifid pre-alar seta and simple spine-like thoracic and abdominal setae.
Resumo:
The morphological sequence of Trypanosoma rangeli development in the alimentary canal of Rhodnius prolixus, is described, with observation made in dissected guts from 6 hours to 45 days post-infection. No metacyclic-forms are produced in the digestive tract at any time, and transmission by the contaminative route must be considered atypical. Amastigotes appear to be an essential stage in the development of T. rangeli in the gut of R. prolixus. The epidemiological importance of the developmental pattern of T. rangeli in the vector´s gut is discussed, and its usefulness for aging infection is considered.
Resumo:
The morphological sequence of Trypanosoma rangeli development in the body cavity of Rhodnius prolixus is described. The metacyclic trypanosome is the product of successive division and transformation during the intra and extracellular development in the haemocoele. The significance of the early invasion of T. rangeli into the haemolymph is discussed. The epidemiological importance of the developmental pattern of T. rangeli in the vectors haemolymph and the host-response to the parasite are considered.
Resumo:
Frequent individual observations od different stages of Rhodnius prolixus exposed to Trypanosoma rangeli, revealed a higher susceptibility to infection in the bugs exposed during the two first instars. The mortality rate in infected bugs was significantly higher than in controls, indicating that the parasite was responsible for the majority of deaths. An analysis of the mortality distribution, per instar, is presented. Statistical analysis of deaths among the different infected instars, showed that T. rangeli produces its pathological effect in any stage of R. prolixus independently of its susceptibility to the parasite. The survival to adult decreased in all the infected instar bugs. A significant longer time to reach the adult stage was observed in the infected bugs when compared with controls, excepting for specimens exposed in the third instar. The epidemiological significance of the present results is discussed.
Resumo:
Infective stages of Leishmania (Leishmania) amazonensis, capable of producing amastigote infections in hamster skin, were shown to be present in the experimentally infected sandfly vector Lutzomyia flaviscutellata 15, 25, 40, 49, 70, 96 and 120 hours after the flies had received their infective blood-meal. Similarly, infective stages of Leishmania (L.) chagasi were demonstrated in the experimentally infected vector Lu. longipalpis examined 38, 50, 63, 87, 110, 135, 171 and 221 hours following the infective blood-meal, by the intraperitoneal inoculation of the flagellates into hamsters. The question of whether or not transmission by the bite of the sandfly is dependent on the presence of [quot ]metacyclic[quot ] promastigotes in the mouthparts of the vector is discussed.
Resumo:
The fourth-instar larva and pupa of Psorophora pseudomelanota Barata & Cotrim, 1971 and Phoniomyia deanei Lourenço-de-Oliveira, 1983 are described and compared with those of related species.
Resumo:
Laboratory bioassays were conducted to determine the relative suscepbility of eggs, 1st-, 3rd-, 5th- instar nymphs and adults of Rhodnius prolixus to one isolate of the entomopathogenic hyphomycete, Beauveria bassiana. Treatments consisted of directly spraying on insects of increasing doses of inoculum (3 x 10* to 3 x 10 (elevated to 5th potency) conidia per cm*). Mortality due to all doses of conidia was very high in the five tested stages of the target insect. Experiments on eggs demonstrated that the fungal isolate was able to kill eggs before they hatched. Both time-mortality and dose-mortality responses showed that the susceptibility of R. prolixus varied according to its stage of development and increased with age. As matter of fact, at the dose of 3 x 10* conidia per cm*, LD50 varied between 11.2 days in 1st-instar nymphs and 6.4 days in both 5th-instar nymphs and adults. Comparison of LD50 permitted to estimate that 1st-instar nymphs were about 700-fold less susceptible than the two oldest stages
Resumo:
We characterized the Plasmodium falciparum antigen 332 (Ag332) which is specifically expressed during the asexual intraerythrocytic cycle of the parasite. The corresponding Pf332 gene has been located in the subtelomeric region of chromosome 11. Furthermore, it is present in all strais so far analyzed and shows marked restriction length fragment polymorphism. Partial sequence and restriction endonuclease digestion of cloned fragments revealed that the Pf332 gene is composed of highly degenerated repeats rich is glutamic acid. Mung been nuclease digestion and Northern blot analysis suggested that Pf332 gene codes for a protein of about 700 kDa. These data were further confirmed by Western blot and immunoprecipitation of parasites extracts with an antiserum raised against a recombinant clone expressing part of the Ag332. Confocal immunofluorescence showed that Ag332 is translocated from the parasite to the surface of infected red blood cells within vesicle-like structures. In addition, Ag332 was detected on the surface of monkey erythrocytes infected with Plasmodium falciparum.
Resumo:
In the Saimiri monkey, an experimental host for human malaria, acquired protection against Plasmodium falciparum blood stages depends on the IgG antibody populations developed. In vivo protective anti-falciparum activity of IgG antibodies is correlated with the in vivo opsonizing activity promoting phagocytosis of parasited red bloood cells. In contrast, non protective antibodies inhibit this mechanism by competing at the target level. A similar phenomenon can be and human infection. Anti-cytoadherent and anti-rosette antibodies developed by Saimiri and humans prevent the development of physiopathological events like cerebral malaria which can also occur in this experimental host. Furthermore, transfer to protective human anti-falciparum IgG antibodies into infected Saimiri monkeys exerts an anti parasite activity as efficient as that observed when it is transfered into acute falciparum malaria patients, making the Saimiri an even more attractive host. Studies on the role of immunocompetent cells in the protective immune reponse are still in their infancy, however the existance of a restricted polymorphism of MHC II class molecules in the Saimiri confers additional theoretical and practical importance to this model.
Resumo:
The effect of temperature (20 degrees-35 degrees C) on different stages of Romanomermis iyengari was studied. In embryonic development, the single-cell stage eggs developed into mature eggs in 4.5-6.5 days at 25-35 degrees C but, required 9.5 days at 20 degrees C. Complete hatching occurred in 7 and 9 days after egg-laying at 35 and 30 degrees C, respectively. At 25 and 20 degrees C, 85-96 of the eggs did not hatch even by 30th day. Loss of infectivity and death of the preparasites occurred faster at higher temperatures. The 50 survival durations of preparasites at 20 and 35 degrees C were 105.8 and 10.6 hr respectively. They retained 50 infectivity up to 69.7 and 30.3 hr. The duration of the parasitic phase increased as temperature decreased. Low temperature favoured production of a higher proportion of females which were also larger in size. The maximum time taken for the juveniles to become adults was 14 days at 20 degrees C and the minimum was 9 days at 35 degrees C. Oviposition began earlier at higher temperature than at lower temperature. However, its fecundic period was shorter at 20 degrees C than at 35 degrees C indicating enhanced rate of oviposition at 20 degrees C. Fecundity was adversely affected at 20 degrees C and 35 degrees C. It is shown that the temperature range of 25 degrees-30 degrees C favours optimum development of R. iyengari.