103 resultados para Cotton agroecosystem
Resumo:
Effect of gossypol on survival and reproduction of the zoophytophagous stinkbug Podisus nigrispinus (Dallas). Gossypol is a sesquiterpene aldehyde found in cotton plants conferring resistance against herbivory. Although the effect of this sesquiterpenoid on insect pests of cotton is known, the interaction of this compound with zoophytophagous predators such as Podisus nigrispinus (Dallas) (Hemiptera, Pentatomidae) has not been studied so far. Thus, the objective of this study was to evaluate the effect of the purified gossypol on nymphs and adults of P. nigrispinus. Nymphs and adults of this predator were fed on Tenebrio molitor pupae and supplemented with solutions of gossypol at concentrations of 0.00, 0.05, 0.10, and 0.20% (w/v) during the nymphal and adult stages or, only during the adult stage of P. nigrispinus. The nymphal stage of the predator was, on average, two days longer when suplemmented with gossypol. Emerged adults had lower fecundity and egg hatching, especially at the highest gossypol concentration (0.20%) ingested during the nymphal and adult stages. However, this predator was not affected when it ingested the compound only during the adult stage. P. nigrispinus can have delayed nymphal development and lower reproductive performance when ingesting the gossypol during the nymphal and adult stages, but only at higher concentrations of gossypol than that produced by cotton plants.
Resumo:
Selection pressure to obtain resistant genotypes can result in fitness cost. In this study, we report the effects of the selection pressure of a commercial formulation of Bacillus thuringiensis on biological aspects of a Dipel-resistant strain of velvetbean caterpillar, Anticarsia gemmatalis Hübner. Comparisons of Dipel-resistant and susceptible individuals revealed significant differences in pupal weight and larval development time. Both strains (Dipel-resistant and susceptible) were susceptible to Cry1Ac toxin expressed in foliar cotton tissues. Resistant and susceptible strains showed low survival rates of 22.5% and 51.2%, respectively, when fed with Greene diet containing Bt-cotton. Larvae bioassayed after three laboratory generations presented lower survival and less instar numbers than individuals maintained in the laboratory for more than 144 generations. Pupal weight was 9.4% lower and larval development time was 1.9 days longer in the resistant population than in the susceptible strain. Other parameters, such as duration of pupal stage, adult longevity, number of eggs per female, oviposition period, and egg fertility, remained unaffected.
Resumo:
The protective effect of cations, especially Ca and Mg, against aluminum (Al) rhizotoxicity has been extensively investigated in the last decades. The mechanisms by which the process occurs are however only beginning to be elucidated. Six experiments were carried out here to characterize the protective effect of Mg application in relation to timing, location and crop specificity: Experiment 1 - Protective effect of Mg compared to Ca; Experiment 2 - Protective effect of Mg on distinct root classes of 15 soybean genotypes; Experiment 3 - Effect of timing of Mg supply on the response of soybean cvs. to Al; Experiment 4 - Investigating whether the Mg protective effect is apoplastic or simplastic using a split-root system; Experiment 5 - Protective effect of Mg supplied in solution or foliar spraying, and Experiment 6 - Protective effect of Mg on Al rhizotoxicity in other crops. It was found that the addition of 50 mmol L-1 Mg to solutions containing toxic Al increased Al tolerance in 15 soybean cultivars. This caused soybean cultivars known as Al-sensitive to behave as if they were tolerant. The protective action of Mg seems to require constant Mg supply in the external medium. Supplying Mg up to 6 h after root exposition to Al was sufficient to maintain normal soybean root growth, but root growth was not recovered by Mg addition 12 h after Al treatments. Mg application to half of the root system not exposed to Al was not sufficient to prevent Al toxicity on the other half exposed to Al without Mg in rooting medium, indicating the existence of an external protection mechanism of Mg. Foliar spraying with Mg also failed to decrease Al toxicity, indicating a possible apoplastic role of Mg. The protective effect of Mg appeared to be soybean-specific since Mg supply did not substantially improve root elongation in sorghum, wheat, corn, cotton, rice, or snap bean when grown in the presence of toxic Al concentrations.
Resumo:
Decomposing crop residues in no-tillage system can alter soil chemical properties, which may consequently influence the productivity of succession crops. The objective of this study was to evaluate soil chemical properties and soybean, maize and rice yield, grown in the summer, after winter crops in a no-tillage system. The experiment was carried out in Jaboticabal, SP, Brazil (21 ° 15 ' 22 '' S; 48 ° 18 ' 58 '' W) on a Red Latosol (Oxisol), in a completely randomized block design, in strip plots with three replications. The treatments consisted of four summer crop sequences (maize monocrop, soybean monocrop, soybean/maize rotation and rice/bean/cotton rotation) combined with seven winter crops (maize, sunflower, oilseed radish, pearl millet, pigeon pea, grain sorghum and sunn hemp). The experiment began in September 2002. After the winter crops in the 2005/2006 growing season and before the sowing of summer crops in the 2006/2007 season, soil samples were collected in the layers 0-2.5; 2.5-5.0; 5-10; 10-20; and 20-30 cm. Organic matter, pH, P, K+, Ca2+, Mg2+, and H + Al were determined in each soil sample. In the summer soybean/maize rotation and in maize the organic matter contents and P levels were lower, in the layers 0-10 cm and 0-20 cm, respectively. Summer rice/bean/cotton rotation increased soil K levels at 0-10 cm depth when sunn hemp and oilseed radish had previously been grown in the winter, and in the 0-2.5 cm layer for millet. Sunn hemp, millet, oilseed radish and sorghum grown in the winter increased organic matter contents in the soil down to 30 cm. Higher P levels were found at the depths 0-2.5 cm and 0-5 cm, respectively, when sunn hemp and oilseed radish were grown in the winter. Highest grain yields for soybean in monoculture were obtained in succession to winter oilseed radish and sunn hemp and in rotation with maize, after oilseed radish, sunn hemp and millet. Maize yields were highest in succession to winter oilseed radish, millet and pigeon pea. Rice yields were lowest when grown after sorghum.
Resumo:
Field-based soil moisture measurements are cumbersome. Thus, remote sensing techniques are needed because allows field and landscape-scale mapping of soil moisture depth-averaged through the root zone of existing vegetation. The objective of the study was to evaluate the accuracy of an empirical relationship to calculate soil moisture from remote sensing data of irrigated soils of the Apodi Plateau, in the Brazilian semiarid region. The empirical relationship had previously been tested for irrigated soils in Mexico, Egypt, and Pakistan, with promising results. In this study, the relationship was evaluated from experimental data collected from a cotton field. The experiment was carried out in an area of 5 ha with irrigated cotton. The energy balance and evaporative fraction (Λ) were measured by the Bowen ratio method. Soil moisture (θ) data were collected using a PR2 - Profile Probe (Delta-T Devices Ltd). The empirical relationship was tested using experimentally collected Λ and θ values and was applied using the Λ values obtained from the Surface Energy Balance Algorithm for Land (SEBAL) and three TM - Landsat 5 images. There was a close correlation between measured and estimated θ values (p<0.05, R² = 0.84) and there were no significant differences according to the Student t-test (p<0.01). The statistical analyses showed that the empirical relationship can be applied to estimate the root-zone soil moisture of irrigated soils, i.e. when the evaporative fraction is greater than 0.45.
Resumo:
Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.
Resumo:
Crop rotation and cover crop can be important means for enhancing crop yield in rainfed areas such as the lower Coastal Bend Region of Texas, USA. A trial was conducted in 1995 as part of a long-term cropping experiment (7 years) to investigate the effect of oat (Avena sativa L.) cover and rotation on soil water storage and yield of sorghum (Sorghum bicolor L.). The trial design was a RCB in a split-plot arrangement with four replicates. Rotation sequences were the main plots and oat cover crop the subplots. Cover crop reduced sorghum grain yield. This effect was attributed to a reduced concentration of available soil N and less soil water storage under this treatment. By delaying cover termination, the residue with a high C/N acted as an N sink through competition and/or immobilization instead of an N source to sorghum plants. Crop rotation had a significantly positive effect on sorghum yield and this effect was attributed to a significantly larger amount of N concentration under these rotation sequences.
Resumo:
The objective of this work was to study the toxicity of pymetrozine and thiamethoxam to the cotton aphid parasitoid Aphelinus gossypii Timberlake and to the whitefly predator Delphastus pusillus (LeConte). Cotton leaves containing mummies of the parasitoid A. gossypii were collected and treated with seven concentrations of both insecticides. Parasitoid emergence was not affected by pymetrozine and ranged from 59.9% to 75.0%, but decreased with the increase of thiamethoxam concentrations ranging from 30.2% to 69.6%. Cotton leaves infested by whitefly and treated with recommended rates of both insecticides were collected three hours, three days and six days after spraying and colonized with larvae and adults of D. pusillus. Predators released on thiamethoxam-treated leaves experienced mortality from 70% to 100%, while those released on pymetrozine-treated leaves showed mortality from 0% to 20%. Topical toxicity from both insecticides was studied on larvae, pupae and adults of D. pusillus. The survival of predator after six days of exposure to 400, 600 and 800 mg/L of pymetrozine a.i. was higher than 69.6%, and to 25, 100 and 200 mg/L of thiamethoxam a.i. was lower than 8.7%. The toxicity data for A. gossypii and D. pusillus characterize the pymetrozine as harmless for both species, and thiamethoxam of low to moderate toxicity for A. gossypii treated mummies, and high toxicity for D. pusillus.
Resumo:
The objective of this work was to characterize the populations of Gossypium barbadense in the states of Amapá and Pará, Brazil. In situ characterization was conducted through interviews with the owners of the plants and environmental observations. Leaf or petal tissue as well as seed samples were collected for genetic characterization by single sequence repeats markers and for storage in germplasm banks, respectively. The plants were maintained in dooryards and used mainly for medical purposes. The genetic analysis showed no heterozygous plants at the loci tested (f = 1), indicating that reproduction occurs mainly through selfing. The total genetic diversity was high (He = 0.39); and a high level of differentiation was observed between cotton plants from the two states (F ST = 0.36). Conventional methods of in situ maintenance of G. barbadense populations are not applicable. The conservation of the genetic variability of populations present in the two states could be achieved through germplasm collection and establishing of ex situ seed banks.
Resumo:
The sublethal effect of extracts of Azadirachta indica on Ceratitis capitata was evaluated. Two pairs of flies were treated in plastic tubes with cotton placed in plastic cages. An artificial diet (hydrolyzed protein + sugar) was provided ad libitum. The extracts affected significantly the longevity of C. capitata. The pre-oviposition period were not significantly affected by the extracts. The A. indica branches extracted with dichloromethane (888 ppm) affected significantly the fecundity and fertility, reducing the number of eggs laid to approximately 80 % and the egg hatching by 30 % at the 8th day. Therefore, the neem branches extracted with dichloromethane affected the reproduction of C. capitata.
Resumo:
The series of compounds cis-[Fe(CO)4(HgX)2], X=Cl,Br,I shows an octahedral geometry around the iron atom with the two HgX groups cis to each other. In this paper the assignment for the carbonyl stretching modes and the calculation of their force constants were performed on the basis of the Cotton-Krainhanzel model. Taking into account all the data from the IR, 199Hg NMR and UV-vis spectra it is possible to verify the influence of X on the electronic densities at the metallic centers.
Resumo:
In a survey carried out in the state of Mato Grosso, Brazil, the lesion nematode, Pratylenchus brachyurus, and the root-knot nematode, Meloidogyne incognita, were found, respectively, in 94% and 3.7% of a total of 623 root and soil samples representing 21,793 ha. No visible aboveground symptoms in cotton (Gossypium hirsutum) plants infected by P. brachyurus were observed, except for typical root lesions. In contrast, plants with M. incognita usually exhibited pronounced symptoms of damage. The high frequency (94%) of P. brachyurus was unexpected and is of concern considering the fact that soybean (Glycine max) and corn (Zea mays), are both susceptible to this nematode and are used in crop rotation programs.
Resumo:
Fungal diseases in cotton (Gossypium hirsutum), such as anthracnose caused by Colletotrichum gossypii and ramulose caused by C. gossypii var. cephalosporioides, are responsible for large yield losses. These pathogens are seed borne and morphologically similar although they induce different symptoms, which can lead to misdiagnosis using the blotter testing method. The present study was carried out to assess the viability of using Amplified Fragment Length Polymorphism (AFLP) markers to differentiate these pathogens. Five isolates, for each pathogen, were classified according to pathogenicity on cotton plants, and mycelial growth morphology. Conidial suspensions were sprayed on 30-day-old cotton plants and the symptoms assessed ten and 40 days after inoculation. For growth morphology 200 cottonseeds were inoculated with seven-day-old pure cultures, and the mycelial traits observed under a stereoscopic microscope seven days after inoculation. The DNA for AFLP analysis was obtained from seven-day-old fungal mycelia grown in liquid medium, using the Dneasy Qiagen protocol. Using the AFLP technique 318 polymorphic bands were selected to estimate similarities using Dice's Coefficient. The results clearly distinguished between ramulose and anthracnose isolates, which agreed with morphological and pathogenicity testing.
Resumo:
The soybean rust caused by Phakopsora pachyrhizi is considered the main soybean disease and consequently the appropriate selection and the use of spraying equipment are vital for its control. The aim of this study was to evaluate the performance of aerial application equipment for soybean rust control. It was used: Micronair AU 5000 at 10 L ha-1 (with oil) and at 20 L ha-1 (without oil); Stol ARD atomizer at 10 and 20 L ha-1 (both with oil) and Spectrum (electrostatic) at 10 L ha-1 (without oil). The adjuvant was cotton oil (1.0 L ha-1) with emulsifier (BR 455) at 0.025 L ha-1. The field trial was set up at the 3rd fungicide application, when f four replications of each treatment. There were no statistical differences among treatments related to fungicide deposits by at a Confidence Interval of 95%. It was observed that the best results were obtained with Micronair (10 L ha-1 with oil), Stol (20 L ha-1 with oil) and electrostatic system at 10 L ha-1 with the lowest relative humidity (64%).
Resumo:
The study evaluated the energy performance of pig farming integrated with maize production in mechanized no-tillage system. In this proposed conception of integration, the swine excrement is used as fertilizers in the maize crop. The system was designed involving the activities associated to the pig management and maize production (soil management, cultivation and harvest). A one-year period of analysis was considered, enabling the production of three batches of pigs and two crops of maize. To evaluate the energy performance, three indicators were created: energy efficiency, use of non-renewable resources efficiency and cost of non-renewable energy to produce protein. The energy inputs are composed by the inputs and infrastructure used by the breeding of pigs and maize production, as well as the solar energy incident on the agroecosystem. The energy outputs are represented by the products (finished pigs and maize). The results obtained in the simulation indicates that the integration improves the energy performance of pig farms, with an increase in the energy efficiency (186%) as well as in the use of the non-renewable energy resources efficiency (352%), while reducing the cost of non-renewable energy to produce protein (‑58%).