101 resultados para Complex Effective Porosity
Resumo:
Morpho-biological diversity of Trypanosoma cruzi has been known since Chagas' first works in 1909. Several further studies confirmed the morphological differences among the parasite strains, which were isolated from different reservoirs and vectors, as well as from human beings. In the early sixties, antigenic differences were found in the parasite strains from various sources. These differences, coupled to the observation of regional variations of the disease, led to the proposal of the term cruzi complex to designate the taxon T. cruzi. Since then this protozoan has been typed in distinct biodemes, zymodemes and lineages which were consensually grouped into T. cruzi I, T. cruzi II and into non-grouped strains. T. cruzi genotypic characterization, initially carried out by schizodeme analysis and more recently by various other techniques, has shown a great diversity of the parasite strains. In fact, T. cruzi is formed by groups of heterogeneous sub-population, which present specific characteristics, including distinct histotropism. The interaction of the different infecting clones of the cruzi complex and the human host will determine the morbidity of the disease.
Resumo:
The lengths of the male genital filaments and female spermathecal ducts were measured in phlebotomine sand flies of the Lutzomyia intermedia species complex and the ratios between these characters calculated. Ratios for L. intermedia s. s. from Northeast vs Southeast Brazil (Espírito Santo and Minas Gerais), Espírito Santo/Minas Gerais vs Rio de Janeiro/São Paulo and L. intermedia vs L. neivai were significantly different at P < 0.1, 0.05 and 0.01 respectively when compared using ANOVA. The spermathecal ducts and genital filaments of L. intermedia were significantly longer than those of L. neivai (P < 0.01) and could be used to differentiate these species. The taxonomic and biological significance of these differences is discussed.
Resumo:
In Mexico, Triatoma longipennis (Usinger), Triatoma picturata (Usinger), and Triatoma pallidipennis (Stal), primary Chagas disease vector species of the phyllosoma complex, were analyzed by randomly amplified polymorphic DNA (RAPD). Sixteen decametric primers resolved individual profiles not identical, but partially discriminative between species. Analysis based on pairwise presence/absence comparisons between the three species was performed using three primers and two outgroup species Triatoma infestans (Klug) and Triatoma barberi (Usinger). Fifty-three bands in total were scored, although only two bands were constant among the three phyllosoma complex species. Two other bands were constant only for T. longipennis and T. picturata together, and not present in T. pallidipennis. Neighbor Joining tree and the multiple correspondence analysis discriminated T. pallidipennis clearly from the other two species, although there was overlap between T. longipennis and T. picturata. The results indicate a close relationship between the studied species and support the hypothesis of their recent evolution. The suitability of RAPD to discern populations within the species is discussed.
Resumo:
The first and second internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA of Biomphalaria tenagophila complex (B. tenagophila, B. occidentalis, and B. t. guaibensis) were sequenced and compared. The alignment lengths of these regions were about 655 bp and 481 bp, respectively. Phylogenetic relationships among the Biomphalaria species were inferred by Maximum Parsimony and Neighbor-joining methods. The phylogenetic trees produced, in most of the cases, were in accordance with morphological systematics and other molecular data previously obtained by polymerase chain reaction and restriction fragment length polymorphism analysis. The present results provide support for the proposal that B. tenagophila represents a complex comprising B. tenagophila, B. occidentalis and B. t. guaibensis.
Resumo:
There is no effective chemotherapy against diseases caused by Phytomonas sp., a plant trypanosomatid responsible for economic losses in major crops. We tested three triazolo-pyrimidine complexes [two with Pt(II), and another with Ru(III)] against promastigotes of Phytomonas sp. isolated from Euphorbia characias. The incorporation of radiolabelled precursors, ultrastructural alterations and changes in the pattern of metabolite excretion were examined. Different degrees of toxicity were found for each complex: the platinun compound showed an inhibition effect on nucleic acid synthesis, provoking alterations on the levels of mitochondria, nucleus and glycosomes. These results, together with others reported previously in our laboratory about the activity of pyrimidine derivatives, reflect the potential of these compounds as agents in the treatment of Phytomonas sp.
Resumo:
Mycobacterium tuberculosis complex (MTBC) members are causative agents of human and animal tuberculosis. Differentiation of MTBC members is required for appropriate treatment of individual patients and for epidemiological purposes. Strains from six MTBC species - M. tuberculosis, M. bovis subsp. bovis, M. bovis BCG, M. africanum, M. pinnipedii, and "M. canetti" - were studied using gyrB-restriction fragment length polymorphism (gyrB-RFLP) analysis. A table was elaborated, based on observed restriction patterns and published gyrB sequences. To evaluate applicability of gyrB-RFLP at Instituto Adolfo Lutz, São Paulo, Mycobacterial Reference Laboratory, 311 MTBC clinical isolates, previously identified using traditional methods as M. tuberculosis (306), M. bovis (3), and M. bovis BCG (2), were analyzed by gyrB-RFLP. All isolates were correctly identified by the molecular method, but no distinction between M. bovis and M. bovis BCG was obtained. Differentiation of M. tuberculosis and M. bovis is of utmost importance, because they require different treatment schedules. In conclusion, gyrB-RFLP is accurate and easy-to-perform, with potential to reduce time needed for conventional differentiation methods. However, application for epidemiological studies remains limited, because it cannot differentiate M. tuberculosis from M. africanum subtype II, and "M. canetti", M. africanum subtype I from M. pinnipedii, and. M. bovis from M. bovis BCG.
Resumo:
Anopheles (Nyssorhynchus) marajoara is a proven primary vector of malaria parasites in Northeast Brazil, and An. deaneorum is a suspected vector in Western Brazil. Both are members of the morphologically similar Albitarsis Complex, which also includes An. albitarsis and an undescribed species, An. albitarsis "B". These four species were recognized and can be identified using random amplified polymorphic DNA (RAPD) markers, but various other methodologies also point to multiple species under the name An. albitarsis. We describe here a technique for identification of these species employing polymerase chain reaction (PCR) primers based on ribosomal DNA internal transcribed spacer 2 (rDNA ITS2) sequence. Since this method is based on known sequence it is simpler than the sometimes problematical RAPD-PCR. Primers were tested on samples previously identified using RAPD markers with complete correlation.
Resumo:
Edema is a consistent observation in inflamatory bowel disease (IBD), and immune responses are inevitable in inflammation. Because the lymphatic system is an integral part of both tissue fluid homeostasis and immune reactions, it is likely that lymphatics play a role in the complex etiology of IBD. Despite the consistent findings that the lymphatic system is altered during gastrointestinal inflammation, the majority of studies conducted on the disease only mention the lymphatic system in passing. The effects of inflammatory mediators on lymphatic vessel function also remain poorly defined, despite its essential role in immunity and prevention of tissue edema. Processes allowing effective lymph transport are altered during inflammation, however, the mode of alteration and reason why lymphatics are ineffective in inflammatory reactions need to be further investigated. In addition, these processes have not yet been examined in an appropriate animal model and little has been done using in vivo methods of investigation in any model of gastrointestinal inflammation. This paper reviews the role of the lymphatic system in intestinal inflammation, as well as the role of the inflammatory products in mediating lymphatic contractile function.
Resumo:
In order to evaluate the taeniosis-cysticercosis complex in a population of a peasants' settlement, located at Teodoro Sampaio, state of São Paulo, Brazil (longitude 52° 36'12 ", latitude 22° 17'12 ") a series of laboratory markers were determined. After signing an informed consent, participants answered a standardized questionnaire. To determine anti-Taenia solium cysticercus antibodies, the samples were tested by enzyme linked immunoabsorbent assay using 18-and 14-kDa antigen proteins from vesicular fluid of Taenia crassiceps (VF-Tcra). The reactive and inconclusive ELISA samples were tested by immunoblotting. Total IgE levels were determined by chemmiluminescence's assay and hemogram by flow cytometer flux counter. A total of 84 individuals, 5.9% presented anti-T. solium cysticercus antibodies in ELISA and 3.6% were strongly reactive in the 18/14 kDa immunoblotting confirmatory test. All of the individuals with positive antibodies showed elevated Total IgE levels. We conclude that the frequency of anti-T. solium cysticercus antibodies in this population is higher than other regions considered endemic in São Paulo. Thus, it is important to carry out surveys in Peasants' settlement areas with the objective of establishing public health measures for prevention and control of infectious diseases such as taeniosis-cysticercosis.
Resumo:
Aspects related to hatching, life time, number of blood meals to molt, mortality, feeding time and postfeed defecation delay for each instar of Meccus phyllosomus, M. mazzottii, and M. bassolsae, life-cycle were evaluated and compared in two cohorts of each of those three species, fed on hens or rabbits. No significant (p > 0.05) differences were recorded among cohorts fed on hens respect to cohorts fed on rabbits in M. phyllosomus and M. mazzottii and the average time of hatching was 21.5 days for cohorts fed on hens and 22.5 for cohorts fed on rabbits. Average egg-to-adult development times were no significant (p > 0.05) different between both cohorts of M. phyllosomus and M. mazzotti, independent of the blood meal source. The average span in days for each instar fed on hens was not significantly different to the average span for each instar fed on rabbits, when comparisons were made by species. The number of blood meals at each nymphal instar varied from 1 to 6 in both cohorts of each species. The mortality rates were higher on older nymphs, in both cohorts of M. phyllosomus and M. bassolsae, whereas they were higher on first instar nymphs on M. mazzottii. Mean feeding time was no significant (p > 0.05) different in triatomines fed on hens or fed on rabbits, when each species were compared separately. A similar number of nymphs of each cohort, completed the cycle. Defecation delay was no significant (p > 0.05) different when cohorts fed on hens and fed on rabbits were compared by species. Most of the studied parameters showed no significant (p > 0.05) differences among those cohorts fed on hens and for fed on rabbits, which could mean a high degree of association of those species with birds as much as mammals, under wild conditions, increasing their capacity to colonize human dwellings.
Resumo:
Human pulmonary tuberculosis (TB) is a worldwide public health problem. In resistant individuals, control of the infection mainly requires development of a Th1 cell immune response with production of cytokines, of which interferon-gamma (IFN-gamma)plays an important role. Several antigens from Mycobacterium tuberculosis complex has been described for use in vaccine development or for diagnostic purposes, however little evaluation has been done in endemic area for TB. The proliferative and IFN-gamma human T cell immune responses, to four recombinant proteins (MBP-3, NarL, MT-10.3, 16 kDa) and PPD, of 38 Brazilian TB patients (6 untreated and 32 treated) and 67 controls (38 positive and 29 negative tuberculin skin test - TST) were compared. The highest reactivity mean rate was obtained with PPD followed by 16 kDa in TB patients. While most of the patients (87%) and controls (> 64%) respond to the PPD, 16kDa was more specifically recognized (> 21%) although less sensitive (54%). When TB patients were divided according to treatment status, opposite to PPD, higher average level of IFN-gamma was induced by 16kDa in untreated (505 pg/ml) compared to treated TB patients and TST+ (269.8 pg/ml x 221.6pg/ml, respectively), although the difference was not significant. These data show that in contrast with the other recombinant proteins, the stimulatory potency of 16kDa to induce proliferative and INF-gamma response was more effective and is more recognized by active TB untreated patients, eliciting in control individuals a more selective immune response than PPD.
Resumo:
Lutzomyia longipalpis is the main vector of Leishmania infantum chagasi, the causative agent of American visceral leishmaniasis (AVL). Although there is strong evidence that Lu. longipalpis is a species complex, not all data concerning populations from Brazil support this hypothesis. The issue is still somewhat controversial for this large part of Lu. longipalpis distribution range even though that it is the Latin American region contributing to most of the cases of AVL. In this mini-review we consider in detail the current data for the Brazilian populations and conclude that Lu. longipalpis is a complex of incipient vector species with a complexity similar to Anopheles gambiae s.s. in Africa.
Resumo:
The Triannulatus Complex of Anopheles (Nyssorhynchus) consists of at least three sibling species, namely Anopheles triannulatus s.s., Anopheles halophylus and a third undescribed member herein referred to as An. triannulatus "C". Sympatric anophelines belonging to species complexes, even though closely related, may exploit different environments such as larval habitats. In this paper we hypothesize that rainfall and seasonal flooding would distinctly influence the availability of larval habitats and consequently the seasonal population dynamics of sympatric members of the Triannulatus Complex. A reflection of this is distinct seasonal biting frequencies exhibited by three members of the Triannulatus Complex at a site in Central Brazil. Population dynamics seem to be influenced by the water level in the local rivers, although biting frequency of all three species was negatively influenced by rainfall. An. triannulatus s.s. was more abundant following the end of the rainy season, but notably 30 to 60 days after flooding. On the other hand, An. halophylus and An. triannulatus C peaked during the middle of the dry season, when water impoundments have no inflow, are somewhat reduced in size and the water becomes brackish. Differences in population dynamics were greater between An. triannulatus s.s. and An. halophylus and An. triannulatus C than between An. halophylus and An. triannulatus C. This might reflect differences in larval habitat exploitation and therefore spatial segregation among these members of the complex.
Resumo:
The present work is a thorough investigation of the degree of reproductive isolation between Meccus mazzottii and Meccus longipennis, Meccus picturatus, Meccus pallidipennis and Meccus bassolsae, as well as between M. longipennis and M. picturatus. We examined fertility and segregation of morphological characteristics in two generations of hybrids derived from crosses between these species. The percentage of pairs with (fertile) offspring was highest in the set of crosses between M. longipennis and M. picturatus, and lowest between M. mazzottii and M. picturatus. Most first-generation (F1) individuals from crosses involving M. mazzottii were morphologically similar to this species, while only F1 x F1 progeny of parental crosses between M. mazzottii and M. longipennis had offspring second generation that looked like M. mazzottii. The results indicate that different degrees of reproductive isolation apparently exist among the species of the Phyllosoma complex examined in this study. The biological evidence obtained in this study does not support the proposal that M. longipennis and M. picturatus are full species. It could indicate on the contrary, that both could be considered as subspecies of a single polytypic species. On the other hand, biological evidence supports the proposal that M. mazzottii is a full species.
Resumo:
Phlebotomine sand flies are often captured with human bait and/or light traps, either with or without an animal bait. More recently, synthetic attractants have been used as bait in traps to improve the capture of phlebotomine sand flies as well as other insects of medical and veterinary importance. The aim of the present study was to evaluate the effects of the kairomone 1-octen-3-ol (octenol) and the synthetic human odor BG-Mesh LureTM (BGML - lactic acid, caproic acid and ammonia) baited in modified CDC light traps on the capture of phlebotomine sand flies. The experiments followed the 5x5 Latin square design. Among the species caught, Lutzomyia intermedia apparently presented a dose-dependent response to octenol. The response obtained with the BGML, alone or in combination with octenol (5 mg/h), indicated some degree of attractiveness of these baits to different phlebotomine sand fly species. Octenol seems to be more attractive to L. intermedia than to Lutzomyia longipalpis, while the BGML presented a higher success in capturing L. longipalpis. When the components of the BGML were used separately, there was no increase in catching the female of L. intermedia. Apparently, there was no synergistic effect between the octenol and the BGML. In conclusion, the octenol and the BGML were demonstrated to be possible baits to attract some phlebotomine sand fly species.