77 resultados para Clathrin Binding Subunit
Resumo:
Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.
Resumo:
Blomia tropicalis (Bt) and Dermatophagoides pteronyssinus (Dp) are the prevalent house dust mites in tropical countries and are associated with allergic diseases. Glycosylated antigens are highly immunogenic and involved in different pathologies. We evaluated the presence of IgE, IgG1, and IgG4 to concanavalin A-binding antigens (Bt-Con-A) isolated from Bt-total extract in sera of allergic and non-allergic subjects. Bt-total and Bt-Con-A extracts were evaluated by SDS-PAGE and ELISA for reacting with IgE, IgG1, and IgG4 in sera of 121 patients with allergic rhinitis and 36 non-allergic individuals. All subjects were skin prick tested with Bt-total extract and inhibition tests were performed for IgE, IgG1, and IgG4 using both extracts (Bt-total and Bt-Con-A). Skin prick test showed that 58% of the patients were sensitized to Bt (Bt+), with 52% reactive to both mites (Bt and Dp) and 6% to Bt only. A broad spectrum of proteins (14-152 kDa) was visualized in Bt-total and components >27 kDa for the Bt-Con-A extract. ELISA showed a similar profile of IgE, IgG1 and IgG4 levels in response to Bt-total and Bt-Con-A extracts in different groups, although Bt+ patients showed a lower IgG4 reactivity to Bt-Con-A extract. Specific IgG1 levels were higher in Bt+ patients than in control subjects, and IgG4 levels showed no significant difference among groups. ELISA inhibition showed a partial IgE and total IgG1 and IgG4 cross-reactivity with Dp extract for Bt-total and Bt-Con-A extracts. We conclude that Con-A-binding components isolated from Bt constitute major allergens and are involved in both allergen sensitization (IgE response) and homeostasis maintenance (IgG1 and IgG4 responses).