81 resultados para Cell mediated immune responses
Resumo:
Animal studies suggest that olive oil is capable of modulating functions of cells of the immune system in a manner similar to, albeit weaker than, fish oils. There is some evidence that the effects of olive oil on immune function in animal studies are due to oleic acid rather than to trace elements or antioxidants. Importantly, several studies have demonstrated effects of oleic acid-containing diets on in vivo immune responses. In contrast, consumption of a monounsaturated fatty acid (MUFA)-rich diet by humans does not appear to bring about a general suppression of immune cell functions. The effects of this diet in humans are limited to decreasing aspects of adhesion of peripheral blood mononuclear cells, although there are trends towards decreases in natural killer cell activity and proliferation. The lack of a clear effect of MUFA in humans may be attributable to the higher level of monounsaturated fat used in the animal studies, although it is ultimately of importance to examine the effects of intakes which are in no way extreme. The effects of MUFA on adhesion molecules are potentially important, since these molecules appear to have a role in the pathology of a number of diseases involving the immune system. This area clearly deserves further exploration
Resumo:
We report that immune complexes of IgM (ICIgM) antibodies and ovalbumin in the form of a precipitate from the equivalence zone induce the generation of reactive oxygen species by rabbit blood polymorphonuclear leucocytes (PMN), as measured by the chemiluminescence (CL) production in the presence of luminol. The kinetics of CL generation induced by ICIgM is quite different from that induced by precipitated immune complexes of IgG (ICIgG): the maximum rate of CL production for ICIgM occurs around 14 min, whereas for ICIgG it occurs about 5 min after incubation with the cells. Also the triggering of the process requires a higher concentration of ICIgM than of ICIgG. Evidence is presented that these effects are not mediated by interaction of the antigen (ovalbumin) with the cell, since immune precipitates of ovalbumin and the F(ab')2 fragment had no effect. Our observations that precipitated ICIgM can also be an effective stimulus for CL generation and thus for O2- production reveal a new functional capability of PMN. These results may have implications for the understanding of the participation of ICIgM (as well as of ICIgG) in inflammatory reactions mediated by PMN in immune complex diseases, and in the mechanisms of defense against microbes and other non-self agents.
Resumo:
Gene vaccines represent a new and promising approach to control infectious diseases, inducing a protective immune response in the appropriate host. Several routes and methods of genetic immunization have been shown to induce antibody production as well as T helper (Th) cell and cytotoxic T lymphocyte activation. However, few studies have compared the nature of the immune responses generated by different gene vaccination delivery systems. In the present study we reviewed some aspects of immunity induced by gene immunization and compared the immune responses produced by intramuscular (im) DNA injection to gene gun-mediated DNA transfer into the skin of BALB/c mice. Using a reporter gene coding for ß-galactosidase, we have demonstrated that im injection raised a predominantly Th1 response with mostly IgG2a anti-ßgal produced, while gene gun immunization induced a mixed Th1/Th2 profile with a balanced production of IgG2a and IgG1 subclasses. Distinct types of immune responses were generated by different methods of gene delivery. These findings have important implications for genetic vaccine design. Firstly, a combination between these two systems may create optimal conditions for the induction of a broad-based immune response. Alternatively, a particular gene vaccine delivery method might be used according to the immune response required for host protection. Here, we describe the characteristics of the immune response induced by gene vaccination and the properties of DNA involved in this process.
Resumo:
Host resistance to Trypanosoma cruzi is dependent on both natural and acquired immune responses. During the acute phase of the infection the presence of IFN-g, TNF-a, IL-12 and GM-CSF has been closely associated with resistance, whereas TGF-ß and IL-10 have been associated with susceptibility. Several investigators have demonstrated that antibodies are responsible for the survival of susceptible animals in the initial phase of infection and for the maintenance of low levels of parasitemia in the chronic phase. However, how this occurs is not yet understood. Our results and other data in the literature support the hypothesis that the protective role of antibodies in the acute phase of infection is dependent mostly on their ability to induce removal of bloodstream trypomastigotes from the circulation in addition to other concomitant cell-mediated events.
Resumo:
Current immunological opinion disdains the necessity to define global interconnections between lymphocytes and regards natural autoantibodies and autoreactive T cells as intrinsically pathogenic. Immunological theories address the recognition of foreignness by independent clones of lymphocytes, not the relations among lymphocytes or between lymphocytes and the organism. However, although extremely variable in cellular/molecular composition, the immune system preserves as invariant a set of essential relations among its components and constantly enacts contacts with the organism of which it is a component. These invariant relations are reflected, for example, in the life-long stability of profiles of reactivity of immunoglobulins formed by normal organisms (natural antibodies). Oral contacts with dietary proteins and the intestinal microbiota also result in steady states that lack the progressive quality of secondary-type reactivity. Autoreactivity (natural autoantibody and autoreactive T cell formation) is also stable and lacks the progressive quality of clonal expansion. Specific immune responses, currently regarded as the fundament of the operation of the immune system, may actually result from transient interruptions in this stable connectivity among lymphocytes. More permanent deficits in interconnectivity result in oligoclonal expansions of T lymphocytes, as seen in Omenn's syndrome and in the experimental transplantation of a suboptimal diversity of syngeneic T cells to immunodeficient hosts, which also have pathogenic consequences. Contrary to theories that forbid autoreactivity as potentially pathogenic, the physiology of the immune system is conservative and autoreactive. Pathology derives from failures of these conservative mechanisms.
Resumo:
Allogeneic mesenchymal stem cells (allo-MSCs) have recently garnered increasing interest for their broad clinical therapy applications. Despite this, many studies have shown that allo-MSCs are associated with a high rate of graft rejection unless immunosuppressive therapy is administered to control allo-immune responses. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is a co-inhibitory molecule expressed on T cells that mediates the inhibition of T-cell function. Here, we investigated the osteogenic differentiation potency of allo-MSCs in an activated immune system that mimics the in vivo allo-MSC grafting microenvironment and explored the immunomodulatory role of the helper T cell receptorCTLA4 in this process. We found that MSC osteogenic differentiation was inhibited in the presence of the activated immune response and that overexpression of CTLA4 in allo-MSCs suppressed the immune response and promoted osteogenic differentiation. Our results support the application of CTLA4-overexpressing allo-MSCs in bone tissue engineering.