264 resultados para CHLORINE-RESISTANT MEMBRANE
Resumo:
Silymarin is the flavonoids extracted from the seeds of Silybum marianum (L) Gearth as a mixture of three structural isomers: silybin, silydianin and silychristin, the former being the most active component. Silymarin protects liver cell membrane against hepatotoxic agents and improves liver function in experimental animals and humans. It is generally accepted that silymarin exerts a membrane-stabilizing action preventing or inhibiting membrane peroxidation. The experiments with soybean lipoxygenase showed that the three components of silymarin brought about a concentration-dependent non-competitive inhibition of the lipoxygenase. The experiments also showed an analogous interaction with animal lipoxygenase, thus showing that an inhibition of the peroxidation of the fatty acid in vivo was self-evident. Silybin almost completely suppressed the formation of PG at the highest concentration (0.3 mM) and proved to be an inhibitor of PG synthesis in vitro. In our experiments, silybin at lower dose (65 mg/Kg) decreased liver lipoperoxide content and microsomal lipoperoxidation to 84.5% and 68.55% of those of the scalded control rats respectively, and prevented the decrease of liver microsomal cytochrome p-450 content and p-nitroanisole-0-demethylase activity 24 h post-scalding. Effects of silymarin on cardiovascular systen have been studied in this university since 1980. O. O silymarin 800 mg/Kg/d or silybin 600 mg/Kg/d reduced plasma total cholesterol, LDL-C and VLDL-C. They however, enhanced HDL-C in hyperlipenic rats. Further studies showed that silymarin enhanced HDL-C in hyperlipemic rats. Further studies showed that silymarin enhanced HDL-C but didn't affect HDL-C, a property of this component which is beneficial to treatment of atherosclerosis. The results showed silymarin 80 mg or silybin 60 mg decreased in vitro platelet aggregation (porcentagem) in rats. The maximal platelet aggregation induced by ADP declined significantly, and time to reach maximal platelet aggregation and five-minute disaggregation didn't change. In our experiments, iv silybin 22,4 mg/kg lowered the amplitude and duration of diastolic blood pressure (DBP) more than those of systolic (SBP), but the descending aortic blood flow, cardiac contractility and ECG did not change significantly in anesthetized open-chest cats. The results indicated a reduction of peripheral resistance and dilatatory action on the resistant blood vessels. These effects are beneficial to coronary heart disease. We also observed the effects of silybin on morphological change, the release of glutamic oxaloacetate aminotrasferase (GOT) and lactate dehydrogenase (LDH) as well as the radioactivity of 3H-TdR incorporated into DNA in normal cardiac cells and cells infected by coxsackie B5, virus os newborn rats. The results showed that silynin did not affect the morphology of normal cell, and that the pathological change of cells infected by virus was delayed and reduced as compared to control. We have investigated the effect of silybin on synthesis and release of LTs in the cultured porcine cerebral basilar arteries (PCBA). Silybin 100 and 500 µmol/L declined the amounts of LTs released from the PCBA incubsated in the presence of A 23187, AA and indomenthacin. The result suggests that silybin can inhibit the activity of 5-lipoxygenase of cerebral blood vessel and may protect the brain from ischemia.
Resumo:
Human amniotic interferon was investigated to define the species specificity of its antiviral action and compare its anti-cellular and NK cell stimulating activities with those of other human interferons. The antiviral effect was titrated in bovine (RV-IAL) and monkey (VERO) cells. Amniotic interferon exhibited, in bovine cells, 5% of the activity seen in monkey cells, while alpha interferon displayed 200%. No effect was detected with either beta or gamma interferon in bovine cells. Daudi cells were exposed to different concentrations of various interferons and the cell numbers were determined. The anticellular effect of the amniotic interferon reached its peak on the third day of incubation. Results suggested a higher activity for alpha and gamma interferons and a lower activity for beta when compared to amniotic interferon. Using total mononuclear cells as effector cells and K 562 as target cell in a 51Cr release assay, it was demonstrated that low concentrations of amniotic interferon consistently stimulated NK cell activity in cells derived from several donors, the results indicating a higher level of activity with this interferon than with alpha and beta interferons.
Resumo:
Based on the results of in vitro sensitivity of Plasmodium falciparum to chloroquine, quinine and mefloquine, and evaluation of drug consumption conducted in 1987-1988 in four areas in the noth and south-west of Cameron, two opposite situations were encountered in this country. In northern Cameron where mefloquine resistance is prevalent a close correlation was found between the responses of P. falciparum to mefloquine and to quinine, but not between mefloquine and chloroquine. In the south, where chloroquine resistance is highly prevalent, no correlation was found neither between mefloquine and chloroquine nor mefloquine and quinine, but the responses to quinine and chloroquine appear partly correlated. These lead to formulate the hypothesis of a "southern" type of P. falciparum submitted to a high chloroquine drug pressure inducing a secondary cross resistance, whilst a "northern"type submitted to a relatively high and abortive quinine drug pressure inducing a primary quinine resistance and a secondary cross resistance with mefloquine.
Resumo:
Schistosomula of Schistosoma mansoni became resistant to antibody-dependent complement damage in vitro after pre-incubation with normal human erythrocytes (NHuE) whatever the ABO or Rh blood group. Resistant parasites were shown to acquire host decay accelerating factor (DAF) , a 70 kDa glycoprotein attached to the membrane of NHue by a GPI anchor. IgG2a mAb anti-human DAF (IA10) immunoprecipitated a 70 kDa molecule from 125I-labeled schistosomula pre-incubated with NHuE and inhibited their resistance to complement-dependent killing in vtro. Incubationof schistosomula with erytrocytes from patients with paroxsimal nocturnal hemoglobinuria (PNHE) or SRBC, wich are DAF-deficient, did not protect the parasites from complement lesion. Supernatant of 100,000 x g collected from NHuE incubated for 24 h in defined medium was shown to contain a soluble form of DAF and to protect schistosomula from complement killing. Schistosomula treated with trypsin before incubation with NHuE ghosts did not become resistant to complement damage. On the other hand, pre-treatment with chymotrypsin did not interfere with the acquisition of resistance by the schistosomula. These results indicate that, in vitro, NHuE DAF can be transferred to schistosomula in a soluble form and that the binding of this molecule to the parasite surface is dependent upon trypsin-sensitive chymotrypsin-insensitive polipeptide(s) present on the surface of the worm.
Resumo:
The objective of this study is to determine whether various hycanthone resistant strains of schistosomes which have been independently isolated are all affected in the same gene. A strain obtained from a Brazilian patient was compared with a strain of Puerto Rican origin selected in the laboratory. If the mutation conferring resistance involved two different genes, one would expect that the progeny of a cross between the two strains would show complementation, i.e. it would be sensitive to the drug. We have performed such a cross and obtained F1 hybrid worms wich were essentially all resistant, thus suggesting that the mutation conferring resistance in the two strains involves the same gene.
Resumo:
The susceptibility of four isolates of Schistosoma mansoni (BH, MAP, MPR-1 and K) to four multiple doses of anti-schistosomal agents (hycanthone, niridazole, oxamniquire, and praziquantel) were evaluated in infected female Swiss albino mice. These schistosomal isolates had been maintained in the laboratory without further drug pressure for 20 to 30 generations. Multiple dosage regimens were used for each drug against each isolate of S. mansoni to generate ED50 (effective dose 50%) values. Results demonstrated that the K isolate is resistant to niridazole, the MPR-1 isolate to oxamniquine, and the MAP isolate to both hycanthone and oxamniquine. The BH isolate was susceptible to all drugs and was used as the reference isolate. All isolates were susceptible to praziquantel. The significance of the difference in response of the MPR-1 and MAP isolates is discussed. These results confirm the resistance of these isolates of S. mansoni of three schistosomicides and demonstrate that the resistance of these isolates are stable over long periods of time without exposure to drugs.
Resumo:
Nosocomial infections are a relevant factor in complicating the recovery of patients interned for even minor causes. In attempt to determine their origin it is crucial to consider that their origin is of an endogenous nature. Looking for an acessible expression of intestinal colonization we analyzed fecal samples from 3 separate groups of hospital patients collected after different lenghts of time. For practical reasons one group was studied prospectively and two other groups (patients hospitalized for up to 7 days and patients hospitalized for more than 7 days) were compared to one another. We looked for the emergence of tellurite resistance among Enterobacteriaceae using a selective medium. MacConkey potassium tellurite (MCPT). The frequence of prospectively studied patients with tellurite resistant strains was significantly greater after 7 days of hospitalization. For the two other groups, patients with more than 7 days of hospitalization showed a significant increase of bacterial species and of strains with new antimicrobial resistance markers. High molecular weigth plasmids were detected in some of these strains. These data show that the MCPT medium is a useful tool for the investigation of bowel colonization in hospitalized patients by drug-resistant Enterobacteriaceae.
Resumo:
To investigate the clonal diversity of Staphylococcus aureus strains isolated at João Pessoa, State of Paraíba, Brazil, digested genomic DNA were studied by pulsed-field gel electrophoresis (PFGE) in nine methicillin-resistant strains (MRSA) and three methicillin-sensitive strains (MSSA), selected among 67 isolates based on their antimicrobial susceptibility and epidemiology. The isolates were obtained between April and November 1992 from the Hospital of the Federal University of Paraíba, located in João Pessoa. Two MRSA isolates from the Oswaldo Cruz Hospital, São Paulo, Brazil, including an epidemic strain previously detected from different hospitals at the country were used as control. Five different patterns, were demonstrated by MRSA isolated in João Pessoa and these patterns were described in several epidemiologically unrelated hospitals in São Paulo. Our results suggest the interstate dissemination of a MRSA clone in João Pessoa which is similar to that described in other cities of Brazil.
Resumo:
The four dominant outer membrane proteins (46, 38, 33 and 28 kDa) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in a semi-purified preparation of vesicle membranes of a Neisseria meningitidis (N44/89, B:4:P1.15:P5.5,7) strain isolated in Brazil. The N-terminal amino acid sequence for the 46 kDa and 28 kDa proteins matched that reported by others for class 1 and 5 proteins respectively, whereas the sequence (25 amino acids) for the 38 kDa (class 3) protein was similar to class 1 meningococcal proteins. The sequence for the 33 kDa (class 4) was unique and not homologous to any known protein.
Resumo:
The freshwater snail Biomphalaria glabrata is an intermediate host of the trematode Schistosoma mansoni. However, some strains of B. glabrata are resistant to successful infection by S. mansoni larvae. The present work examines the profile of organic acids present in S. mansoni-resistant and -susceptible strains of B. glabrata, in order to determine whether the type of organic acid present is related to susceptibility. The organic acids were extracted from the hemolymph of two susceptible B. glabrata strains (PR, Puerto Rico and Ba, Jacobina-Bahia from Brazil), and from the resistant strains 13-16-R1 and 10R2, using solid phase extraction procedures followed by high performance liquid chromatography. The organic acids obtained were analyzed and identified by comparison with known standards. Pyruvate, lactate, succinate, malate, fumarate, acetate, propionate, ß-hydroxybutyrate and acetoacetate were detected in all hemolymph samples. Under standard conditions, the concentration of each of these substances varied among the strains tested and appeared to be specific for each strain. An interesting variation was the low concentration of pyruvate in the hemolymph of PR-snails. Only the concentration of fumarate was consistently different (p£ 0.05) between resistant and susceptible strains
Resumo:
An artificial feeding system was used where citrated bovine blood was offerred to male and female Amblyomma cajennense. Vestiges of blood, sweat, hair and exfoliated skin were used as phago-stimulants placed on the surface of the silicone membrane. The ticks were collected, as engorged nymphs, from naturally infested equines, with the ecdysis occurring in the laboratory. Four hundred ticks were used, 50% being female, at three to four weeks post-ecdysis. Vestiges of blood on the silicone membrane were the most efficient phago-stimulant and the association of vestiges of blood and sweat residue smears yielded better results compared to the other phago-stimulants used
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
Little is known about the molecular mechanisms underlying the release of merozoites from malaria infected erythrocytes. In this study membranous structures present in the culture medium at the time of merozoite release have been characterized. Biochemical and ultrastructural evidence indicate that membranous structures consist of the infected erythrocyte membrane, the parasitophorous vacuolar membrane and a residual body containing electron dense material. These are subcellular compartments expected in a structure that arises as a consequence of merozoite release from the infected cell. Ultrastructural studies show that a novel structure extends from the former parasite compartment to the surface membrane. Since these membrane modifications are detected only after merozoites have been released from the infected erythrocyte, it is proposed that they might play a role in the release of merozoites from the host cell
Resumo:
The kinetoplastid membrane protein 11 (KMP-11) has been recently described in Leishmania (Leishmania) donovani as a major component of the promastigote membrane. Two oligonucleotide primers were synthesized to PCR-amplify the entire coding region of New World Leishmania species. The Leishmania (Viannia) panamensis amplification product was cloned, sequenced and the putative amino acid sequence determined. A remarkably high degree of sequence homology was observed with the corresponding molecule of L. (L) donovani and L. (L) infantum (97% and 96%, respectively). Southern blot analysis showed that the KMP-11 locus is conformed by three copies of the gene. The L. (V) panamensis ORF was subsequently cloned in a high expression vector and the recombinant protein was induced and purified from Escherichia coli cultures. Immunoblot analysis showed that 80%, 77% and 100% sera from cutaneous, mucocutaneous and visceral leishmaniasis patients, respectively, recognized the recombinant KMP-11 protein. In a similar assay, 86% of asymptomatic Leishmania-infected individuals showed IgG antibodies against the rKMP-11. We propose that KMP-11 could be used as a serologic marker for infection and disease caused by Leishmania in America.