91 resultados para CD4 cell count
Resumo:
The objective of the present study was to evaluate the duodenal mucosa of HIV-infected patients during antiretroviral therapy. This was an observational study conducted on HIV-positive patients and a control group. Group 1 comprised 22 HIV-negative individuals while 38 HIV-positive individuals were classified according to the CDC 1993 classification into group 2 (A1 or A2) or group 3 (B2, A3, B3, C2, C3). All subjects were submitted to upper gastrointestinal endoscopy with duodenal biopsies. Qualitative, semi-quantitative and quantitative histological analyses were performed. Results were considered significant when P < 0.05. A higher prevalence of inflammatory infiltrate and eosinophilia was observed in the HIV group, together with a reduction in mucosal CD4+ lymphocyte (L) counts [median (lower-upper quartiles), 12.82 (8.30-20.33), 6.36 (1.75-11.66) and 1.75 (0.87-3.14) in groups 1, 2 and 3, respectively] which was not correlated with disease stage. The extent of CD4+L count reduction was similar in blood and duodenal mucosa. Normal CD8+L and CD45RO+L counts, and normal numbers of macrophages and antigen-presenting cells were also found in the HIV patients. The cytokine pattern did not differ among groups. Tissue HIV, assessed by p24 antigen, correlated with a higher CD45RO+L count (77.0 (61-79.8) and 43.6 (31.7-62.8) in p24+ and p24-, respectively, P = 0.003), and IL-4 positivity (100 and 48.2% in p24+ and p24-, respectively, P = 0.005). The duodenal mucosa of HIV+ patients showed a relatively preserved histological architecture. This finding may be characteristic of a population without opportunistic infections and treated with potent antiretroviral therapy, with a better preservation of the immune status.
Resumo:
In order to understand the mechanisms of poor osseointegration following dental implants in type 2 diabetics, it is important to study the biological properties of alveolar bone osteoblasts isolated from these patients. We collected alveolar bone chips under aseptic conditions and cultured them in vitro using the tissue explants adherent method. The biological properties of these cells were characterized using the following methods: alkaline phosphatase (ALP) chemical staining for cell viability, Alizarin red staining for osteogenic characteristics, MTT test for cell proliferation, enzyme dynamics for ALP contents, radio-immunoassay for bone gla protein (BGP) concentration, and ELISA for the concentration of type I collagen (COL-I) in the supernatant. Furthermore, we detected the adhesion ability of two types of cells from titanium slices using non-specific immunofluorescence staining and cell count. The two cell forms showed no significant difference in morphology under the same culture conditions. However, the alveolar bone osteoblasts received from type 2 diabetic patients had slower growth, lower cell activity and calcium nodule formation than the normal ones. The concentration of ALP, BGP and COL-I was lower in the supernatant of alveolar bone osteoblasts received from type 2 diabetic patients than in that received from normal subjects (P < 0.05). The alveolar bone osteoblasts obtained from type 2 diabetic patients can be successfully cultured in vitro with the same morphology and biological characteristics as those from normal patients, but with slower growth and lower concentration of specific secretion and lower combining ability with titanium than normal ones.
Resumo:
Familial Mediterranean fever (FMF) is a periodic autoinflammatory disease characterized by chronic inflammation. This study investigated the relationship between acute-phase reactants and gene mutations in attack-free periods of childhood FMF. Patients diagnosed with FMF were divided into four groups based on genetic features: no mutation, homozygous, heterozygous, and compound heterozygous. These groups were monitored for 2 years, and blood samples were collected every 6 months during attack-free periods. Erythrocyte sedimentation rate, C-reactive protein, fibrinogen, and white blood cell count were measured. A disease severity score was determined for each patient. Mean values for erythrocyte sedimentation rate and fibrinogen were significantly different in the homozygous group. White blood cell count and C-reactive protein were similar between the groups. Disease severity score was higher in patients with the M694V mutation than in individuals without the mutation, as well as in those with other mutation groups. Periodic follow-up of patients with FMF MEFV mutations in subjects with acute-phase reactants may be useful in the prevention of morbidity.
Resumo:
The familial acute myeloid leukemia related factor gene (FAMLF) was previously identified from a familial AML subtractive cDNA library and shown to undergo alternative splicing. This study used real-time quantitative PCR to investigate the expression of the FAMLF alternative-splicing transcript consensus sequence (FAMLF-CS) in peripheral blood mononuclear cells (PBMCs) from 119 patients with de novo acute leukemia (AL) and 104 healthy controls, as well as in CD34+cells from 12 AL patients and 10 healthy donors. A 429-bp fragment from a novel splicing variant of FAMLF was obtained, and a 363-bp consensus sequence was targeted to quantify total FAMLF expression. Kruskal-Wallis, Nemenyi, Spearman's correlation, and Mann-Whitney U-tests were used to analyze the data. FAMLF-CS expression in PBMCs from AL patients and CD34+ cells from AL patients and controls was significantly higher than in control PBMCs (P<0.0001). Moreover,FAMLF-CS expression in PBMCs from the AML group was positively correlated with red blood cell count (rs=0.317, P=0.006), hemoglobin levels (rs=0.210, P=0.049), and percentage of peripheral blood blasts (rs=0.256, P=0.027), but inversely correlated with hemoglobin levels in the control group (rs=–0.391, P<0.0001). AML patients with high CD34+ expression showed significantly higherFAMLF-CS expression than those with low CD34+ expression (P=0.041). Our results showed thatFAMLF is highly expressed in both normal and malignant immature hematopoietic cells, but that expression is lower in normal mature PBMCs.
Resumo:
Levamisole has been increasingly used as an adulterant of cocaine in recent years, emerging as a public health challenge worldwide. Levamisole-associated toxicity manifests clinically as a systemic vasculitis, consisting of cutaneous, hematological, and renal lesions, among others. Purpura retiform, cutaneous necrosis, intravascular thrombosis, neutropenia, and less commonly crescentic nephritis have been described in association with anti-neutrophil cytoplasmic antibodies (ANCAs) and other autoantibodies. Here we report the case of a 49-year-old male who was a chronic cocaine user, and who presented spontaneous weight loss, arthralgia, and 3 weeks before admission purpuric skin lesions in the earlobes and in the anterior thighs. His laboratory tests on admission showed serum creatinine of 4.56 mg/dL, white blood count 3,800/μL, hemoglobin 7.3 g/dL, urinalysis with 51 white blood cells/μL and 960 red blood cells/μL, and urine protein-to-creatinine ratio 1.20. Serum ANCA testing was positive (>1:320), as well as serum anti-myeloperoxidase and anti-proteinase 3 antibodies. Urine toxicology screen was positive for cocaine and levamisole, with 62.8% of cocaine, 32.2% of levamisole, and 5% of an unidentified substance. Skin and renal biopsies were diagnostic for leukocytoclastic vasculitis and pauci-immune crescentic glomerulonephritis, respectively. The patient showed a good clinical response to cocaine abstinence, and use of corticosteroids and intravenous cyclophosphamide. Last serum creatinine was 1.97 mg/dL, white blood cell count 7,420/μL, and hemoglobin level 10.8 g/dL. In levamisole-induced systemic vasculitis, the early institution of cocaine abstinence, concomitant with the use of immunosuppressive drugs in severe cases, may prevent permanent end organ damage and associate with better clinical outcomes.
Resumo:
Cinnamomum zeylanicum Blume, Lauraceae, has long been known for having many biological properties. This study aimed to identify the constituents of the essential oil from C. zeylanicum leaves using GC-MS and to assess its inhibitory effect on Salmonella enterica, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa based on MIC and MBC determination and kill-time study. Eugenol (73.27%) was the most prevalent compound in the essential oil followed by trans-β-cariophyllene (5.38%), linalool (3.31%), and alcohol cinamic acetate (2.53%). The results showed an interesting antibacterial activity of the oil with MIC ranging from 1.25 to 10 µL.mL-1. MBC values were in the range of 20 - 80 µL.mL-1. A concentration of 10 and 40 µL.mL-1 of the essential oil caused a fast and steady decrease in viable cell count (2 to 5 log cycles) of all assayed strains along 24 hours. A concentration of 40 µL.mL-1 of the oil provided a total elimination of the initial inocula of S. aureus after 2 hours. These results show the possibility of regarding the essential oil from C. zeylanicum leaves as alternative sources of antimicrobial compounds to be applied in food conservation systems.
Resumo:
The aim of this experiment was to evaluate how susceptible spores become to mechanical damage during food extrusion after being submitted to CO2. B. stearothermophilus spores sowed to corn and soy mix were submitted to 99% CO2 for 10 days and extruded in a single-screw extruder. The treatments were: T1 - spore-containing samples, extruded at screw rotational speed of 65 rpm and barrel wall temperature of 80 °C; T2 - as T1, except for screw rotational speed of 150 rpm; and T3 - as T2, except that samples were submitted to the modified atmosphere. The results for cell viability, minimum and maximum residence times, and static pressure were T1 - 19.90 ± 3.24%, 123.3 ± 14.50 seconds; 203.3 ± 14.05 seconds; 2.217 ± 62 kPa; T2 - 21.42 ± 8.24%, 70.00 ± 5.77 seconds; 170.00 ± 4.67 seconds; 2.310 ± 107 kPa; and T3 - 11.06 ± 2.46%, 86.00 ± 7.23 seconds; 186.00 ± 7.50 seconds; 2.403 ± 93 kPa, respectively. It was concluded that the extrusion process did reduce the cell count. However, screw rotational speed variation or CO2 pre-treatment did not affect cell viability.
Resumo:
Several studies have recently shown the use of recombinant rabies virus as potential vector-viral vaccine for HIV-1. The sequence homology between gp 120 and rabies virus glycoprotein has been reported. The McCoy cell line has therefore been used to show CD4+ or CD4+ like receptors. Samples of HIV-1 were isolated, when plasma of HIV-1 positive patients was inoculated in the McCoy cell line. The virus infection was then studied during successive virus passages. The proteins released in the extra cellular medium were checked for protein activity, by exposure to SDS Electrophoresis and blotting to nitro-cellulose filter, then reacting with sera of HIV positive and negative patients. Successive passages were performed, and showed viral replication, membrane permeabilization, the syncytium formation, and the cellular lysis (cytopathic effect). Flow cytometry analysis shows clear evidence that CD4+ receptors are present in this cell line, which enhances the likelihood of easy isolation and replication of HIV. The results observed allow the use of this cell line as a possible model for isolating HIV, as well as for carrying out studies of the dynamics of viral infection in several situations, including exposure to drugs in pharmacological studies, and possibly studies and analyses of the immune response in vaccine therapies.
Resumo:
We studied the role of CD4+, CD8+, CD4- CD8- T cells and IgG anti-Leishmania after infection or vaccination in the CBA/ca mouse. Mice were either infected with L. m. mexicana promastigotes or vaccinated with parasite-membrane antigens incorporated into liposomes. Successfully vaccinated mice were used as cell-donors in adoptive transfer experiments. Naive, syngeneic recipients received highly-enriched CD4+, CD8+ or CD4- CD8- T cells from those two set of donors and challenged with live parasites. Our results showed that, both CD4+ and CD8+ T cells from infected or vaccinated donors conferred significant disease-resistance to naive recipients. In addition, adoptive transfer of CD4- CD8- T cells from vaccinated donors significantly delayed lesion growth in recipient mice. We concluded that vaccination of CBA mice correlates with the induction of protective CD4+, CD8+ and CD4- CD8- T cells and the synthesis of IgG anti-Leishmania.
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
The control of CD4 gene expression is essential for proper T lymphocyte development. Signals transmitted from the T-cell antigen receptor (TCR) during the thymic selection processes are believed to be linked to the regulation of CD4 gene expression during specific stages of T cell development. Thus, a study of the factors that control CD4 gene expression may lead to further insight into the molecular mechanisms that drive thymic selection. In this review, we discuss the work conducted to date to identify and characterize the cis-acting transcriptional control elements in the CD4 locus and the DNA-binding factors that mediate their function. From these studies, it is becoming clear that the molecular mechanisms controlling CD4 gene expression are very complex and differ at each stage of development. Thus, the control of CD4 expression is subject to many different influences as the thymocyte develops.
Resumo:
Human localized cutaneous leishmaniasis (LCL), induced by Leishmania braziliensis, ranges from a clinically mild, self-healing disease with localized cutaneous lesions to severe forms which can present secondary metastatic lesions. The T cell-mediated immune response is extremely important to define the outcome of the disease; however, the underlying mechanisms involved are not fully understood. A flow cytometric analysis of incorporation of 7-amino actinomycin D and CD4+ or CD8+ T cell surface phenotyping was used to determine whether different frequencies of early apoptosis or accidental cell death occur at different stages of LCL lesions. When all cells obtained from a biopsy sample were analyzed, larger numbers of early apoptotic and dead cells were observed in lesions from patients with active disease (mean = 39.5 ± 2.7%) as compared with lesions undergoing spontaneous healing (mean = 17.8 ± 2.2%). Cells displaying normal viability patterns obtained from active LCL lesions showed higher numbers of early apoptotic events among CD8+ than among CD4+ T cells (mean = 28.5 ± 3.8 and 15.3 ± 3.0%, respectively). The higher frequency of cell death events in CD8+ T cells from patients with LCL may be associated with an active form of the disease. In addition, low frequencies of early apoptotic events among the CD8+ T cells were observed in two patients with self-healing lesions. Although the number of patients in the latter group was small, it is possible to speculate that, during the immune response, differences in apoptotic events in CD4+ and CD8+ T cell subsets could be responsible for controlling the CD4/CD8 ratio, thus leading to healing or maintenance of disease.