97 resultados para Basal metabolism.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent of ADP-ribosylation in rectal cancer was compared to that of the corresponding normal rectal tissue. Twenty rectal tissue fragments were collected during surgery from patients diagnosed as having rectal cancer on the basis of pathology results. The levels of ADP-ribosylation in rectum cancer tissue samples (95.9 ± 22.1 nmol/ml) was significantly higher than in normal tissues (11.4 ± 4 nmol/ml). The level of NAD+ glycohydrolase and ADP-ribosyl cyclase activities in rectal cancer and normal tissue samples were measured. Cancer tissues had significantly higher NAD+ glycohydrolase and ADP-ribosyl cyclase activities than the control tissues (43.3 ± 9.1 vs 29.2 ± 5.2 and 6.2 ± 1.6 vs 1.6 ± 0.4 nmol mg-1 min-1). Approximately 75% of the NAD+ concentration was consumed as substrate in rectal cancer, with changes in NAD+/ADP-ribose metabolism being observed. When [14C]-ADP-ribosylated tissue samples were subjected to SDS-PAGE, autoradiographic analysis revealed that several proteins were ADP-ribosylated in rectum tissue. Notably, the radiolabeling of a 113-kDa protein was remarkably greater than that in control tissues. Poly(ADP)-ribosylation of the 113-kDa protein in rectum cancer tissues might be enhanced with its proliferative activity, and poly(ADP)-ribosylation of the same protein in rectum cancer patients might be an indicator of tumor diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis) was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis) was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Several studies have reported a decrease in serum cholesterol during the consumption of large doses of fermented dairy products or lactobacillus strains. The proposed mechanism for this effect is the removal or assimilation of intestinal cholesterol by the bacteria, reducing cholesterol absorption. Although this effect was demonstrated in vitro, its relevance in vivo is still controversial. Furthermore, few studies have investigated the role of lactobacilli in atherogenesis. The aim of the present study was to determine the effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and the possible hypocholesterolemic and antiatherogenic action of these bacteria using atherosclerosis-prone apolipoprotein E (apo E) knock-out (KO) mice. For this purpose, Swiss/NIH germ-free mice were monoassociated with L. delbrueckii and fed a hypercholesterolemic diet for four weeks. In addition, apo E KO mice were fed a normal chow diet and treated with L. delbrueckii for 6 weeks. There was a reduction in cholesterol excretion in germ-free mice, which was not associated with changes in blood or liver cholesterol concentration. In apo E KO mice, no effect of L. delbrueckii was detected in blood, liver or fecal cholesterol. The atherosclerotic lesion in the aorta was also similar in mice receiving or not these bacteria. In conclusion, these results suggest that, although L. delbrueckii treatment was able to reduce cholesterol excretion in germ-free mice, no hypocholesterolemic or antiatherogenic effect was observed in apo E KO mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibilityto and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesionto the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways) may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis and atherosclerosis are chronic degenerative diseases which have been considered to be independent and whose common characteristic is increasing incidence with age. At present, growing evidence indicates the existence of a correlation between cardiovascular disease and osteoporosis, irrespective of age. The morbidity and mortality of osteoporosis is mainly related to the occurrence of fractures. Atherosclerosis shows a high rate of morbidity and especially mortality because of its clinical repercussions such as angina pectoris, acute myocardial infarction, stroke, and peripheral vascular insufficiency. Atherosclerotic disease is characterized by the accumulation of lipid material in the arterial wall resulting from autoimmune and inflammatory mechanisms. More than 90% of these fatty plaques undergo calcification. The correlation between osteoporosis and atherosclerosis is being established by studies of the underlying physiopathological mechanisms, which seem to coincide in many biochemical pathways, and of the risk factors for vascular disease, which have also been associated with a higher incidence of low-bone mineral density. In addition, there is evidence indicating an action of antiresorptive drugs on the reduction of cardiovascular risks and the effect of statins, antihypertensives and insulin on bone mass increase. The mechanism of arterial calcification resembles the process of osteogenesis, involving various cells, proteins and cytokines that lead to tissue mineralization. The authors review the factors responsible for atherosclerotic disease that correlate with low-bone mineral density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of β2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by β2- and β3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that the free cholesterol (FC) and the cholesteryl ester (CE) moieties of a nanoemulsion with lipidic structure resembling low-density lipoproteins show distinct metabolic fate in subjects and that this may be related to the presence of dyslipidemia and atherosclerosis. The question was raised whether induction of hyperlipidemia and atherosclerosis in rabbits would affect the metabolic behavior of the two cholesterol forms. Male New Zealand rabbits aged 4-5 months were allocated to a control group (N = 17) fed regular chow and to a 1% cholesterol-fed group (N = 13) during a 2-month period. Subsequently, the nanoemulsion labeled with ³H-FC and 14C-CE was injected intravenously for the determination of plasma kinetics and tissue uptake of the radioactive labels. In controls, FC and CE had similar plasma kinetics (fractional clearance rate, FCR = 0.234 ± 0.056 and 0.170 ± 0.038 h-1, respectively; P = 0.065). In cholesterol-fed rabbits, the clearance of both labels was delayed and, as a remarkable feature, FC-FCR (0.089 ± 0.033 h-1) was considerably greater than CE-FCR (0.046 ± 0.010 h-1; P = 0.026). In the liver, the major nanoemulsion uptake site, uptake of the labels was similar in control animals (FC = 0.2256 ± 0.1475 and CE = 0.2135 ± 0.1580%/g) but in cholesterol-fed animals FC uptake (0.0890 ± 0.0319%/g) was greater than CE uptake (0.0595 ± 0.0207%/g; P < 0.05). Therefore, whereas in controls, FC and CE have similar metabolism, the induction of dyslipidemia and atherosclerosis resulted in dissociation of the two forms of cholesterol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homocysteine is a sulfur-containing amino acid derived from the metabolism of methionine, an essential amino acid, and is metabolized by one of two pathways: remethylation or transsulfuration. Abnormalities of these pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is observed in approximately 5% of the general population and is associated with an increased risk for many disorders, including vascular and neurodegenerative diseases, autoimmune disorders, birth defects, diabetes, renal disease, osteoporosis, neuropsychiatric disorders, and cancer. We review here the correlation between homocysteine metabolism and the disorders described above with genetic variants on genes coding for enzymes of homocysteine metabolism relevant to clinical practice, especially common variants of the MTHFR gene, 677C>T and 1298A>C. We also discuss the management of hyperhomocysteinemia with folic acid supplementation and fortification of folic acid and the impact of a decrease in the prevalence of congenital anomalies and a decline in the incidence of stroke mortality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary fat composition can interfere in the development of obesity due to the specific roles of some fatty acids that have different metabolic activities, which can alter both fat oxidation and deposition rates, resulting in changes in body weight and/or composition. High-fat diets in general are associated with hyperphagia, but the type of dietary fat seems to be more important since saturated fats are linked to a positive fat balance and omental adipose tissue accumulation when compared to other types of fat, while polyunsaturated fats, omega-3 and omega-6, seem to increase energy expenditure and decrease energy intake by specific mechanisms involving hormone-sensitive lipase, activation of peroxisome proliferator-activated receptor α (PPARα) and others. Saturated fat intake can also impair insulin sensitivity compared to omega-3 fat, which has the opposite effect due to alterations in cell membranes. Obesity is also associated with impaired mitochondrial function. Fat excess favors the production of malonyl-CoA, which reduces GLUT4 efficiency. The tricarboxylic acid cycle and beta-oxidation are temporarily uncoupled, forming metabolite byproducts that augment reactive oxygen species production. Exercise can restore mitochondrial function and insulin sensitivity, which may be crucial for a better prognosis in treating or preventing obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH) secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to evaluate the concentrations of serum 25-hydroxyvitamin D [25(OH)D], serum calcium, serum phosphorus, alkaline phosphatase, and parathormone (PTH) in patients with polyarticular juvenile idiopathic arthritis (JIA) and to associate them with disease duration and activity, bone mineral density and use of medications. In a cross-sectional and controlled study, 30 patients with polyarticular JIA were evaluated and compared to 30 healthy individuals matched for age and gender. Clinical status, anthropometry, laboratory markers in both patients and controls, and bone mineral density, only in the patients, were measured. Of the 30 patients included in the study, 23 (76.7%) were female and 16 (53.3%) non-Caucasian; mean age was 14 years (range = 4 to 20 years). Mean disease duration was 5 years (range = 1 to 12 years). The mean concentrations of serum albumin-corrected calcium (9.04 ± 0.41 mg/dL) and alkaline phosphatase (153.3 ± 100.1 IU) were significantly lower in patients with JIA than in controls (P < 0.0001 and P = 0.001, respectively). No differences in 25(OH)D, PTH or serum phosphorus were observed between JIA and control subjects. Regarding 25(OH)D concentration, 8 patients (26.7%) and 5 controls (16.7%) had 25(OH)D concentrations compatible with deficiency (lower than 20 ng/mL) and 14 patients (46.7%) and 18 controls (60%) had concentrations compatible with insufficiency (20-32 ng/mL). These values were not associated with disease activity, use of medications or bone mineral density. We observed a high frequency of 25(OH)D insufficiency and deficiency in the study sample. The compromised bone metabolism emphasizes the importance of follow-up of JIA patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E2) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P4) and E2 concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P4 throughout the culture period; however, P4 concentration was significantly higher in NDM. In both media, E2 concentration was increased at 24 h, followed by a decrease at 48 h. The E2:P4 ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E2:P4 ratio in FWS cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this investigation was to analyze the proliferative behavior of rabbit corneal epithelium and establish if any particular region was preferentially involved in epithelial maintenance. [3H]-thymidine was injected intravitreally into both normal eyes and eyes with partially scraped corneal epithelium. Semithin sections of the anterior segment were evaluated by quantitative autoradiography. Segments with active replication (on) and those with no cell division (off) were intermingled in all regions of the tissue, suggesting that the renewal of the epithelial surface of the cornea followed an on/off alternating pattern. In the limbus, heavy labeling of the outermost layers was observed, coupled with a few or no labeled nuclei in the basal stratum. This suggests that this region is a site of rapid cell differentiation and does not contain many slow-cycling cells. The conspicuous and protracted labeling of the basal layer of the corneal epithelium suggests that its cells undergo repeated cycles of replication before being sent to the suprabasal strata. This replication model is prone to generate label-retaining cells. Thus, if these are adult stem cells, one must conclude that they reside in the corneal basal layer and not the limbal basal layer. One may also infer that the basal cells of the cornea and not of the limbus are the ones with the main burden of renewing the corneal epithelium. No particular role in this process could be assigned to the cells of the basal layer of the limbal epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperuricemia has been associated with hypertension, diabetes mellitus, and metabolic syndrome. We studied the association between hyperuricemia and glycemic status in a nonrandomized sample of primary care patients. This was a cross-sectional study of adults ≥20 years old who were members of a community-based health care program. Hyperuricemia was defined as a value >7.0 mg/dL for men and >6.0 mg/dL for women. The sample comprised 720 participants including controls (n=257) and patients who were hypertensive and euglycemic (n=118), prediabetic (n=222), or diabetic (n=123). The mean age was 42.4±12.5 years, 45% were male, and 30% were white. The prevalence of hyperuricemia increased from controls (3.9%) to euglycemic hypertension (7.6%) and prediabetic state (14.0%), with values in prediabetic patients being statistically different from controls. Overall, diabetic patients had an 11.4% prevalence of hyperuricemia, which was also statistically different from controls. Of note, diabetic subjects with glycosuria, who represented 24% of the diabetic participants, had a null prevalence of hyperuricemia, and statistically higher values for fractional excretion of uric acid, Na excretion index, and prevalence of microalbuminuria than those without glycosuria. Participants who were prediabetic or diabetic but without glycosuria had a similarly elevated prevalence of hyperuricemia. In contrast, diabetic patients with glycosuria had a null prevalence of hyperuricemia and excreted more uric acid and Na than diabetic subjects without glycosuria. The findings can be explained by enhanced proximal tubule reabsorption early in the course of dysglycemia that decreases with the ensuing glycosuria at the late stage of the disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the metabolism of early bovine embryos has not been fully elucidated, several publications have addressed this important issue to improve culture conditions for cattle reproductive biotechnologies, with the ultimate goal of producing in vitro embryos similar in quality to those developing in vivo. Here, we review general aspects of bovine embryo metabolism in vitro and in vivo, and discuss the use of metabolic analysis of embryos produced in vitro to assess viability and predict a viable pregnancy after transference to the female tract.