185 resultados para Ammonium sulfonitrate
Resumo:
Crop residues on the soil surface of no-till systems can intensify ammonia volatilization from N fertilizers applied to cereal crops. This study assessed the magnitude of N losses through ammonia volatilization from urea applied to no-till winter (wheat) and summer crops (maize) on a Typic Hapludox in the south-central region of Paraná, southern Brazil. In addition, the potential of alternative N sources (urea with urease inhibitor, liquid fertilizer, ammonium nitrate and ammonium sulfate) and different urea managements (fertilizer applied in the morning or afternoon) were evaluated. Two experiments with maize and wheat were carried out for two years, arranged in a randomized block design with four replications. Nitrogen volatilization losses were assessed with a semi-open static collector until 21 days after fertilization. In winter, the losses were low (<5.5 % of applied N) for all N sources, which were not distinguishable, due to the low temperatures. In the summer, volatilization rates from urea were higher than in the winter, but did not exceed 15 % of applied N. The main factor decreasing N losses in the summer was the occurrence of rainfall in the first five days after fertilization. Urea with urease inhibitor, nitrate and ammonium sulfate were efficient to decrease ammonia volatilization in maize, whereas the application time (morning or afternoon) had no influence.
Resumo:
Maize is among the most important crops in the world. This plant species can be colonized by diazotrophic bacteria able to convert atmospheric N into ammonium under natural conditions. This study aimed to investigate the effect of inoculation of the diazotrophic bacterium Herbaspirillum seropedicae (ZAE94) and isolate new strains of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. The study was conducted in a greenhouse at the Experimental Area of the Universidade Estadual do Sudoeste da Bahia. Inoculation was performed with peat substrate, with and without inoculation containing strain ZAE94 of H. seropedicae and four rates of N, in the form of ammonium sulfate (0, 60, 100, and 140 kg ha-1 N). After 45 days, plant height, dry matter accumulation in shoots, percentage of N, and total N (NTotal) were evaluated. The bacteria were isolated from root and shoot fragments of the absolute control; the technique of the most probable number and identification of bacteria were used. The new isolates were physiologically characterized for production of indole acetic acid (IAA) and nitrogenase activity. We obtained 30 isolates from maize plants. Inoculation with strain ZAE94 promoted an increase of 14.3 % in shoot dry mass and of 44.3 % in NTotal when associated with the rate 60 kg ha-1 N. The strains N11 and N13 performed best with regard to IAA production and J06, J08, J10, and N15 stood out in acetylene reduction activity, demonstrating potential for inoculation of maize.
Resumo:
The application of pig slurry may have a different effect on nitrogen dynamics in soil compared to mineral fertilization. Thus, the aim of this study was to determine the different forms of organic N in a Latossolo Vermelho distroférrico (Typic Hapludox) and their relationship to N uptake by crops in response to 10 years of annual application of pig slurry and mineral fertilizer. The treatments were application rates of 0, 25, 50, 100, and 200 m3 ha-1 of pig slurry, in addition to mineral fertilizer, organized in a randomized block design with four replications. The N contents were determined in the plant tissue and in the forms of total N and acid hydrolyzed fractions: ammonium-N, hexosamine-N, α-amino-N, amide-N, and unidentified-N. Annual application of pig slurry or mineral fertilizer increased the total-N content in the 0-10 cm depth layer. The main fractions of organic N in the soil were α-amino-N when pig slurry was applied and unidentified-N in the case of mineral fertilizers. Pig slurry increased the N fractions considered as labile: α-amino-N, ammonium-N, and amide-N. The increase in these labile organic N fractions in the soil through pig slurry application allows greater N uptake by the maize and oat crops in a no-tillage system.
Resumo:
Alternative copper (Cu) sources could be used in fertilizer production, although the bioavailability of copper in these materials is unknown. The objective of this study was to evaluate the extractants neutral ammonium citrate (NAC), 2 % citric acid, 1 % acetic acid, 10 % HCl, 10 % H2SO4, buffer solution pH 6.0, DTPA, EDTA, water, and hot water in the quantification of available Cu content in several sources, relating them to the relative agronomic efficiency (RAE) of wheat grown in a clayey Latossolo Vermelho eutrófico (Oxisol) and Neossolo Quartzarênico (Typic Quartzipsamment). Copper was applied at the rate of 1.5 mg kg-1 as scrap slag, brass slag, Cu ore, granulated copper, and copper sulfate. The extractants 10 % HCl, 10 % H2SO4, and NAC extracted higher Cu concentrations. The RAE values of brass slag and Cu ore were similar to or higher than those of Cu sulfate and granulated Cu. Solubility in the 2nd NAC extractant, officially required for mineral fertilizers with Cu, was lower than 60 % for the scrap slag, Cu ore, and granulated copper sources. This fact indicates that adoption of the NAC extractant may be ineffective for industrial by-products, although no extractant was more efficient in predicting Cu availability for wheat fertilized with the Cu sources tested.
Resumo:
Despite numerous studies conducted on the lower limit of soil and its contact with saprolite layers, a great deal of work is left to standardize identification and annotation of these variables in the field. In shallow soils, the appropriately noting these limits or contacts is essential for determining their behavior and potential use. The aims of this study were to identify and define the field contact and/or transition zone between soil and saprolite in profiles of an Alisol derived from fine sandstone and siltstone/claystone in subtropical southern Brazil and to subsequently validate the field observations through a multivariate analysis of laboratory analytical data. In the six Alisol profiles evaluated, the sequence of horizons found was A, Bt, C, and Cr, where C was considered part of the soil due to its pedogenetic structure, and Cr was considered saprolite due to its rock structure. The morphological properties that were determined in the field and that were different between the B and C horizons and the Cr layer were color, structure, texture, and fragments of saprolite. According to the test of means, the properties that support the inclusion of the C horizon as part of the soil are sand, clay, water-dispersible clay, silt/clay ratio, macroporosity, total porosity, resistance to penetration, cation exchange capacity, Fe extracted by DCB, Al, H+Al, and cation exchange capacity of clay. The properties that support the C horizon as a transition zone are silt, Ca, total organic C, and Fe extracted by ammonium oxalate. Discriminant analysis indicated differences among the three horizons evaluated.
Resumo:
In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1) and Ion Exchange Resin (IER), from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m). Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.
Resumo:
The use of leaf total nitrogen concentration as an indicator for nutritional diagnosis has some limitations. The objective of this study was to determine the reliability of total N concentration as an indicator of N status for eucalyptus clones, and to compare it with alternative indicators. A greenhouse experiment was carried out in a randomized complete block design in a 2 × 6 factorial arrangement with plantlets of two eucalyptus clones (140 days old) and six levels of N in the nutrient solution. In addition, a field experiment was carried out in a completely randomized design in a 2 × 2 × 2 × 3 factorial arrangement, consisting of two seasons, two regions, two young clones (approximately two years old), and three positions of crown leaf sampling. The field areas (regions) had contrasting soil physical and chemical properties, and their soil contents for total N, NH+4-N, and NO−3-N were determined in five soil layers, up to a depth of 1.0 m. We evaluated the following indicators of plant N status in roots and leaves: contents of total N, NH+4-N, NO−3-N, and chlorophyll; N/P ratio; and chlorophyll meter readings on the leaves. Ammonium (root) and NO−3-N (root and leaf) efficiently predicted N requirements for eucalyptus plantlets in the greenhouse. Similarly, leaf N/P, chlorophyll values, and chlorophyll meter readings provided good results in the greenhouse. However, leaf N/P did not reflect the soil N status, and the use of the chlorophyll meter could not be generalized for different genotypes. Leaf total N concentration is not an ideal indicator, but it and the chlorophyll levels best represent the soil N status for young eucalyptus clones under field conditions.
Resumo:
ABSTRACT High contents of plant-available selenium in the soil in the form of selenate, resulting from natural or anthropogenic action, jeopardizes agricultural areas and requires research for solutions to establish or re-establish agricultural or livestock operation, avoiding the risk of poisoning of plants, animals and humans. The purpose was to evaluate sulfur sources in the form of sulfate, e.g., ammonium sulfate, calcium sulfate, ferric sulfate, in the remediation of tropical soils anthropogenically contaminated with Se under the tropical forage grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf cv. Marandu. More clayey soils are less able to supply plants with Se, which influences the effects of S sources, but it was found that high soil Se concentrations negatively affected forage biomass production, regardless of the soil. Of the tested S sources, the highly soluble ammonium sulfate and ferric sulfate reduced plant Se uptake and raised the available sulfur content in the soil.
Resumo:
This research aimed to characterize the tolerance to flooding and alterations in pectic and hemicellulose fractions from mesocotyl of maize tolerant to flooding when submitted to hypoxia. In order to characterize tolerance seeds from maize cultivars Saracura BRS-4154 and BR 107 tolerant and sensitive to low oxygen levels, respectively, were set to germinate. Plantlet survival was evaluated during five days after having been submitted to hypoxia. After fractionation with ammonium oxalate 0.5% (w/v) and KOH 2M and 4M, Saracura BRS-4154 cell wall was obtained from mesocotyl segments with different damage intensities caused by oxygen deficiency exposure. The cell wall fractions were analyzed by gel filtration and gas chromatography, and also by Infrared Spectrum with Fourrier Transformation (FTIR). The hypoxia period lasting three days or longer caused cell lysis and in advanced stages plant death. The gelic profile from pectic, hemicellulose 2M and 4M fractions from samples with translucid and constriction zone showed the appearance of low molecular weight compounds, similar to glucose. The main neutral sugars in pectic and hemicellulose fractions were arabinose, xilose and mannose. The FTIR spectrum showed a gradual decrease in pectic substances from mesocotyl with normal to translucid and constriction appearance respectively.
Resumo:
The remaining phosphorus (Prem) has been used for estimating the phosphorus buffer capacity (PBC) of soils of some Brazilian regions. Furthermore, the remaining phosphorus can also be used for estimating P, S and Zn soil critical levels determined with PBC-sensible extractants and for defining P and S levels to be used not only in P and S adsorption studies but also for the establishment of P and S response curves. The objective of this work was to evaluate the effects of soil clay content and clay mineralogy on Prem and its relationship with pH values measured in saturated NaF solution (pH NaF). Ammonium-oxalate-extractable aluminum exerts the major impacts on both Prem and pH NaF, which, in turn, are less dependent on soil clay content. Although Prem and pH NaF have consistent correlation, the former has a soil-PBC discriminatory capacity much greater than pH NaF.
Resumo:
The objective of this work was to develop a genetic transformation system for tropical maize genotypes via particle bombardment of immature zygotic embryos. Particle bombardment was carried out using a genetic construct with bar and uidA genes under control of CaMV35S promoter. The best conditions to transform maize tropical inbred lines L3 and L1345 were obtained when immature embryos were cultivated, prior to the bombardment, in higher osmolarity during 4 hours and bombarded at an acceleration helium gas pressure of 1,100 psi, two shots per plate, and a microcarrier flying distance of 6.6 cm. Transformation frequencies obtained using these conditions ranged from 0.9 to 2.31%. Integration of foreign genes into the genome of maize plants was confirmed by Southern blot analysis as well as bar and uidA gene expressions. The maize genetic transformation protocol developed in this work will possibly improve the efficiency to produce new transgenic tropical maize lines expressing desirable agronomic characteristics.
Resumo:
The objective of the present work was to determine the inheritance and stability of transgenes of a transgenic bean line expressing the genes rep-trap-ren from Bean golden mosaic virus and the bar gene. Crosses were done between the transgenic line and four commercial bean cultivars, followed by four backcrosses to the commercial cultivars. Progenies from each cross were evaluated for the presence of the transgenes by brushing the leaves with glufosinate ammonium and by polymerase chain reaction using specific oligonucleotides. Advanced generations were rub-inoculated with an isolate of Bean common mosaic necrosis virus (BCMNV). The transgenes were inherited consistently in a Mendelian pattern in the four crosses studied. The analyzed lines recovered close to 80% of the characteristics of the recurrent parent, as determined by the random amplified DNA markers used, besides maintaining important traits such as resistance to BCMNV. The presence of the transgene did not cause any detectable undesirable effect in the evaluated progenies.
Resumo:
The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield) after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009). Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application). In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows). In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH), and samples were collected in the field for analysis of sugar content (TSH). Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.
Resumo:
The objective of this work was to measure the fluxes of N2O‑N and NH3‑N throughout the growing season of irrigated common‑bean (Phaseolus vulgaris), as affected by mulching and mineral fertilization. Fluxes of N2O‑N and NH3‑N were evaluated in areas with or without Congo signal grass mulching (Urochloa ruziziensis) or mineral fertilization. Fluxes of N were also measured in a native Cerrado area, which served as reference. Total N2O‑N and NH3‑N emissions were positively related to the increasing concentrations of moisture, ammonium, and nitrate in the crop system, within 0.5 m soil depth. Carbon content in the substrate and microbial biomass within 0.1 m soil depth were favoured by Congo signal grass and related to higher emissions of N2O‑N, regardless of N fertilization. Emission factors (N losses from the applied mineral nitrogen) for N2O‑N (0.01-0.02%) and NH3‑N (0.3-0.6%) were lower than the default value recognized by the Intergovernmental Panel on Climate Change. Mulch of Congo signal grass benefits N2O‑N emission regardless of N fertilization.
Resumo:
The effect of N addition on apple yield and quality may vary according to the tree vigor. Apple trees developed over vigorous rootstocks had shown no response to N application in Brazil. In this study it was evaluated the effect of N addition to the soil on yield and quality of ´Royal Gala´ apples grafted on a dwarf rootstock (M.9). The orchard was planted in 1995 (2,857 trees ha-1) on an Oxisol containing 40 g kg-1 of organic matter and pH 6.0. The experiment was carried out from 1998 up to 2005. Treatments consisted of rates of N (0, 50, 100 and 150 kg ha-1 year-1 from 1998 to 2001, and respectively 0, 100, 200 and 300 kg ha-1 afterwards), all broadcasted within the tree row in two equal splits, at bud break and after harvest, as ammonium sulfate. Addition of N to the soil had no effect on fruit yield over the six years regardless of the applied rate. Averaged across treatments and years, fruit yield was 52.3 t ha-1. Nitrogen in the leaves (average of 24 g kg-1) or in the fruits (average of 346 mg kg-1) as well as some attributes related to fruit quality (color, firmness, acidity, soluble solids, physiological disorders) were unaffected by N addition. Some plant parameters related to tree vigor, however, grew higher with the increase on N rate. Thus, it is not necessary to apply N to deep Brazilian soils containing high organic matter in order to assure good fruit quality and yield on high-density orchards carrying dwarf rootstocks probably because the N required for tree growth and fruit production is supplied from soil organic matter decay.