81 resultados para Alcohol blood tests.
Resumo:
The role of sympathetic nerve activity in the changes in arterial blood pressure and renal function caused by the chronic administration of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, was examined in sham and bilaterally renal denervated rats. Several studies have demonstrated that sympathetic nerve activity is elevated acutely after L-NAME administration. To evaluate the role of renal nerve activity in L-NAME-induced hypertension, we compared the blood pressure response in four groups (N = 10 each) of male Wistar-Hannover rats weighing 200 to 250 g: 1) sham-operated vehicle-treated, 2) sham-operated L-NAME-treated, 3) denervated vehicle-treated, and 4) denervated L-NAME-treated rats. After renal denervation or sham surgery, one control week was followed by three weeks of oral administration of L-NAME by gavage. Arterial pressure was measured weekly in conscious rats by a tail-cuff method and renal function tests were performed in individual metabolic cages 0, 7, 14 and 21 days after the beginning of L-NAME administration. L-NAME (60 mg kg-1 day-1) progressively increased arterial pressure from 108 ± 6.0 to 149 ± 12 mmHg (P<0.05) in the sham-operated group by the third week of treatment which was accompanied by a fall in creatinine clearance from 336 ± 18 to 222 ± 59 µl min-1 100 g body weight-1 (P<0.05) and a rise in fractional urinary sodium excretion from 0.2 ± 0.04 to 1.62 ± 0.35% (P<0.05) and in sodium post-proximal fractional excretion from 0.54 ± 0.09 to 4.7 ± 0.86% (P<0.05). The development of hypertension was significantly delayed and attenuated in denervated L-NAME-treated rats. This was accompanied by a striking additional increase in fractional renal sodium and potassium excretion from 0.2 ± 0.04 to 4.5 ± 1.6% and from 0.1 ± 0.015 to 1.21 ± 0.37%, respectively, and an enhanced post-proximal sodium excretion compared to the sham-operated group. These differences occurred despite an unchanged creatinine clearance and Na+ filtered load. These results suggest that bilateral renal denervation delayed and attenuated the L-NAME-induced hypertension by promoting an additional decrease in tubule sodium reabsorption in the post-proximal segments of nephrons. Much of the hypertension caused by chronic NO synthesis inhibition is thus dependent on renal nerve activity.
The secondary alcohol and aglycone metabolites of doxorubicin alter metabolism of human erythrocytes
Resumo:
Anthracyclines, a class of antitumor drugs widely used for the treatment of solid and hematological malignancies, cause a cumulative dose-dependent cardiac toxicity whose biochemical basis is unclear. Recent studies of the role of the metabolites of anthracyclines, i.e., the alcohol metabolite doxorubicinol and aglycone metabolites, have suggested new hypotheses about the mechanisms of anthracycline cardiotoxicity. In the present study, human red blood cells were used as a cell model. Exposure (1 h at 37ºC) of intact human red blood cells to doxorubicinol (40 µM) and to aglycone derivatives of doxorubicin (40 µM) induced, compared with untreated red cells: i) a ~2-fold stimulation of the pentose phosphate pathway (PPP) and ii) a marked inhibition of the red cell antioxidant enzymes, glutathione peroxidase (~20%) and superoxide dismutase (~60%). In contrast to doxorubicin-derived metabolites, doxorubicin itself induced a slighter PPP stimulation (~35%) and this metabolic event was not associated with any alteration in glutathione reductase, glutathione peroxidase, catalase or superoxide dismutase activity. Furthermore, the interaction of hemoglobin with doxorubicin and its metabolites induced a significant increase (~22%) in oxygen affinity compared with hemoglobin incubated without drugs. On the basis of the results obtained in the present study, a new hypothesis, involving doxorubicinol and aglycone metabolites, has been proposed to clarify the mechanisms responsible for the doxorubicin-induced red blood cell toxicity.
Resumo:
Interferon (IFN)-alpha receptor mRNA expression in liver of patients with chronic hepatitis C has been shown to be a response to IFN-alpha therapy. The objective of the present study was to determine whether the expression of mRNA for subunit 1 of the IFN-alpha receptor (IFNAR1) in peripheral blood mononuclear cells (PBMC) is associated with the response to IFN-alpha in patients with chronic hepatitis C. Thirty patients with positive anti-HCV and HCV-RNA, and abnormal levels of alanine aminotransferase in serum were selected and treated with IFN-alpha2b for one year. Those with HBV or HIV infection, or using alcohol were not included. Thirteen discontinued the treatment and were not evaluated. The IFN-alpha response was monitored on the basis of alanine aminotransferase level and positivity for HCV-RNA in serum. IFNAR1-mRNA expression in PBMC was measured by reverse transcription-polymerase chain reaction before and during the first three months of therapy. The results are reported as IFNAR1-mRNA/ß-actin-mRNA ratio (mean ± SD). Before treatment, responder patients had significantly higher IFNAR1-mRNA expression in PBMC (0.67 ± 0.15; N = 5; P < 0.05) compared to non-responders (0.35 ± 0.17; N = 12) and controls (0.30 ± 0.16; N = 9). Moreover, IFNAR1-mRNA levels were significantly reduced after 3 months of treatment in responders, whereas there were no differences in IFNAR1 expression in non-responders during IFN-alpha therapy. Basal IFNAR1-mRNA expression was not correlated with the serum level of alanine and aspartate aminotransferases or the presence of cirrhosis. The present results suggest that IFNAR1-mRNA expression in PBMC is associated with IFN-alpha response to hepatitis C and may be useful for monitoring therapy in patients with chronic hepatitis C.
Resumo:
The increase in non-communicable chronic diseases of adults is due to demographic changes and changes in the risk factors related to physical activity, smoking habits and nutrition. We describe the methodology for the evaluation of persons at 23/25 years of age of a cohort of individuals born in Ribeirão Preto in 1978/79. We present their socioeconomic characteristics and the profile of some risk factors for chronic diseases. A total of 2063 participants were evaluated by means of blood collection, standardized questionnaires, anthropometric and blood pressure measurements, and methacholine bronchoprovocation tests. The sexes were compared by the chi-square test, with alpha = 0.05. Obesity was similar among men and women (12.8 and 11.1%); overweight was almost double in men (30.3 vs 17.7%). Weight deficit was higher among women than among men (8.6 and 2.6%). Women were more sedentary and consumed less alcohol and tobacco. Dietary fat consumption was similar between sexes, with 63% consuming large amounts (30 to 39.9 g/day). Metabolic syndrome was twice more frequent among men than women (10.7 vs 4.8%), hypertension was six times more frequent (40.9 vs 6.4%); altered triglyceride (16.1 vs 9.8%) and LDL proportions (5.4 vs 2.7%) were also higher in men, while women had a higher percentage of low HDL (44.7 vs 39.5%). Asthma and bronchial hyper-responsiveness were 1.7 and 1.5 times more frequent, respectively, among women. The high prevalence of some risk factors for chronic diseases among young adults supports the need for investments in their prevention.
Resumo:
The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group) sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor® (18:1:1) and administered ip (0.1 mL/10 g body weight); control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg) increased (P < 0.05) the time spent and the distance covered in the central zone of the open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze (P < 0.05) after exposing the animals to the open field test.
Resumo:
To determine the hemodynamic mechanisms responsible for the attenuated blood pressure response to mental stress after exercise, 26 healthy sedentary individuals (age 29 ± 8 years) underwent the Stroop color-word test before and 60 min after a bout of maximal dynamic exercise on a treadmill. A subgroup (N = 11) underwent a time-control experiment without exercise. Blood pressure was continuously and noninvasively recorded by infrared finger photoplethysmography. Stroke volume was derived from pressure signals, and cardiac output and peripheral vascular resistance were calculated. Perceived mental stress scores were comparable between mental stress tests both in the exercise (P = 0.96) and control (P = 0.24) experiments. After exercise, the blood pressure response to mental stress was attenuated (pre: 10 ± 13 vs post: 6 ± 7 mmHg; P < 0.01) along with lower values of systolic blood pressure (pre: 129 ± 3 vs post: 125 ± 3 mmHg; P < 0.05), stroke volume (pre: 89.4 ± 3.5 vs post: 76.8 ± 3.8 mL; P < 0.05), and cardiac output (pre: 7.00 ± 0.30 vs post: 6.51 ± 0.36 L/min; P < 0.05). Except for heart rate, the hemodynamic responses and the mean values during the two mental stress tests in the control experiment were similar (P > 0.05). In conclusion, a single bout of maximal dynamic exercise attenuates the blood pressure response to mental stress in healthy subjects, along with lower stroke volume and cardiac output, denoting an acute modulatory action of exercise on the central hemodynamic response to mental stress.