128 resultados para Aewage sludge fertilization
Resumo:
ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1) and five N rates (0, 10, 20, 40, and 80 kg ha-1), in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups) was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.
Resumo:
ABSTRACT The use of cover crops has recently increased and represents an essential practice for the sustainability of no-tillage systems in the Cerrado region. However, there is little information on the effects of nitrogen fertilization and cover crop use on nitrogen soil fractions. This study assessed changes in the N forms in soil cropped to cover crops prior to corn growing. The experiment consisted of a randomized complete block design arranged in split-plots with three replications. Cover crops were tested in the plots, and the N topdressing fertilization was assessed in the subplots. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis, Canavalia brasiliensis M. ex Benth, Cajanus cajan (L.) Millsp, and Sorghum bicolor (L.) Moench. After corn harvesting, the soil was sampled at depths of 0.00-0.10 and 0.10-0.20 m. The cover crops showed different effects at different soil depths. The soil cultivated with U. ruziziensis showed higher contents of total-N and particulate-N than the soil cultivated with C. cajan. Particulate-N was the most sensitive to changes in the soil management among the fractions of N assessed. The soil under N topdressing showed a lower content of available-N in the 0.10-0.20 m layer, which may be caused by the season in which the sampling was conducted or the greater uptake of the available-N by corn.
Resumo:
The influence of K2O (0, 40, 80, 120 kg ha-1) at varying rates of N application (0, 30, 60 kg ha-1) at planting, on panicle blast (Pyricularia grisea (Cooke) Sacc.) was studied in a field experiment conducted during three consecutive years with the upland rice cultivar Douradão. Panicle blast severity decreased with increasing rates of potassium in the absence of nitrogen (N0). The relationship between panicle blast and K rates was quadratic at 30 kg ha-1 of nitrogen. Significant response to K fertilization was not obtained at 60 kg ha-1 of nitrogen in relation to panicle blast severity.
Resumo:
Genetic selection of maize hybrids is often conducted using high N rates during the breeding cycle. This procedure may either lead to the release of genotypes that present nitrogen luxury consumption or require a stronger N input to accomplish their yield potential. This work was carried out to evaluate the effects of N rates on grain yield and N use efficiency of hybrids cultivated in different decades in Southern Brazil. The trial was performed in Lages, Santa Catarina State. A split plot design was used. Hybrids Ag 12, Ag 28, Ag 303 and Ag 9012, released during the 60's, 70's, 80's and 90's, respectively, were evaluated in the main plots. Nitrogen rates equivalent to 0, 50, 100 and 200 kg ha-1 were side-dressed in the split-plots when each hybrid had six fully expanded leaves. Modern-day hybrid Ag 9012 had higher grain yield than hybrids of earlier eras, regardless of N rates. Under high doses of N, the older hybrids Ag 12 and Ag 28 took up more N and presented higher values of shoot dry matter at flowering than Ag 9012. Nonetheless, they set less grains per ear which contributed to decrease their grain yield and N use efficiency.
Resumo:
Cotton (Gossypium hirsutum) is known to have a high requirement for K and to be very sensitive to low soil pH. Most of K reaches plant roots by diffusion in the soil. As K interacts with Ca and Mg, liming can interfere in K movement in the soil, affecting eventually the plant nutrition. The objective of this work was to study the effect of dolomitic lime and 0, 15, 30, 45 and 60 g kg-1 of K on the supply of K to cotton roots. Cotton plants were grown up to 40 days in 5 L pots containing a Dark Red Latosol (Typic Haplusthox) with 68% and 16% of sand and clay, respectively. There was an increase in dry matter yields and in K accumulation due to K fertilization. Root interception of soil K was also increased by K application, but was not affected by lime. Mass flow and diffusion increased linearly with K levels up to 60 mg kg-1, in pots with lime. In pots without lime the amount of K reaching the roots by diffusion increased up to 45 mg kg-1, but decreased at the highest K level. Accordingly, there was more K reaching the roots through mass flow at the highest K level. This happened because there were more fine roots in pots without lime, at the highest K level. As the roots grew closer, there was a stronger root competition leading to a decrease in the amount of K diffused to cotton roots.
Resumo:
The aim of this work was to quantify low molecular weight organic acids in the rhizosphere of plants grown in a sewage sludge-treated media, and to assess the correlation between the release of the acids and the concentrations of trace-elements in the shoots of the plants. The species utilized in the experiment were cultivated in sand and sewage sludge-treated sand. The acetic, citric, lactic, and oxalic acids, were identified and quantified by high performance liquid chromatography in samples collected from a hydroponics system. Averages obtained from each treatment, concentration of trace elements in shoots and concentration of organic acids in the rhizosphere, were compared by Tukey test, at 5% of probability. Linear correlation analysis was applied to verify an association between the concentrations of organic acids and of trace elements. The average composition of organic acids for all plants was: 43.2, 31.1, 20.4 and 5.3% for acetic, citric, lactic, and oxalic acids, respectively. All organic acids evaluated, except for the citric acid, showed a close statistical agreement with the concentrations of Cd, Cu, Ni, and Zn found in the shoots. There is a positive relationship between organic acids present in the rhizosphere and trace element phytoavailability.
Resumo:
The objective of this work was to evaluate the effect on forage yield of sowing winter forage species before and after soybean harvest, at different nitrogen application levels. The experiment was set out in a randomized block design with a strip-split plot arrangement, and three replicates. Sowing methods (18 days before soybean harvest and six days after soybean harvest) were allocated in the main plots, and the combination among forage species (Avena strigosa cv. IAPAR 61 + Lolium multiflorum; A. strigosa cv. Comum + L. multiflorum; A. strigosa cv. Comum + L. multiflorum + Vicia villosa; A. strigosa cv. Comum + L. multiflorum + Raphanus sativus; and L. multiflorum) and nitrogen levels (0, 140, 280 and 420 kg ha-1) in the plots and subplots, respectively. Forage sowing before the soybean harvest made it possible to anticipate first grazing by 14 days, with satisfactory establishment of forage species without affecting forage production. This method permitted a longer grazing period, preventing the need for soil disking, besides allowing the use of no-tillage system. The mixture of forage species enables higher forage yield for pasture in relation to single species pastures, with response to nitrogen fertilization up to 360 kg ha-1.
Resumo:
The objective of this work was to assess the effect of poultry litter fertilization levels on corn and black oat yield using different grazing intensities, poultry litter levels (mixture of manure and bedding material) and a chemical fertilization level. The experimental design was a randomized complete block in a split-plot arrangement with four replicates. Black oat + ryegrass grazing intensities, characterized by different pasture sward management, with animal entrance at 25, 30 and 35-cm heights and exit at 5.0, 10 and 15-cm heights, were established at the main plots. After the grazing period, corn was grown at the subplots with four levels of poultry litter (0, 4,953, 9,907 and 14,860 kg ha-1), aiming to supply 0, 100, 200 and 300 kg ha-1 of nitrogen, and a treatment with chemical fertilizer, according to soil analysis. Grazing intensities had no effect on corn yield. Corn yield was 7,493, 8,458, 9,188, 10,247 and 11,028 kg ha-1, respectively, for the treatments without and with 4,953, 9,907 and 14,860 kg ha-1 of poultry litter, and the treatment with chemical fertilization. Poultry litter levels have a residual effect on the production of black oat grown in succession to corn.
Resumo:
The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield) after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009). Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application). In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows). In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH), and samples were collected in the field for analysis of sugar content (TSH). Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.
Resumo:
The objective of this work was to measure the fluxes of N2O‑N and NH3‑N throughout the growing season of irrigated common‑bean (Phaseolus vulgaris), as affected by mulching and mineral fertilization. Fluxes of N2O‑N and NH3‑N were evaluated in areas with or without Congo signal grass mulching (Urochloa ruziziensis) or mineral fertilization. Fluxes of N were also measured in a native Cerrado area, which served as reference. Total N2O‑N and NH3‑N emissions were positively related to the increasing concentrations of moisture, ammonium, and nitrate in the crop system, within 0.5 m soil depth. Carbon content in the substrate and microbial biomass within 0.1 m soil depth were favoured by Congo signal grass and related to higher emissions of N2O‑N, regardless of N fertilization. Emission factors (N losses from the applied mineral nitrogen) for N2O‑N (0.01-0.02%) and NH3‑N (0.3-0.6%) were lower than the default value recognized by the Intergovernmental Panel on Climate Change. Mulch of Congo signal grass benefits N2O‑N emission regardless of N fertilization.
Resumo:
The objective of this work was to evaluate the microbiological and chemical attributes of a soil with a seven‑year history of urea and swine manure application. In the period from October 2008 to October 2009, soil samples were collected in the 0-10 cm layer and were subjected to the treatments: control, without application of urea or manure; and with the application of urea, pig slurry, and deep pig litter in two doses, in order to supply one or two times the recommended N doses for the maize (Zea mays)/black oat (Avena strigosa) crop succession. The carbon of the microbial biomass (MB‑C) and the basal respiration (C‑CO2) were analyzed, and the metabolic (qCO2) and microbial quotient (qmic) were calculated with the obtained data. Organic matter, pH in water, available P and K, and exchangeable Ca and Mg were also determined. The application of twice the dose of deep pig litter increases the MB‑C and C‑CO2 values. The qmic and qCO2 are little affected by the application of swine manure. The application of twice the dose of deep pig litter increases the values of pH in water and the contents of available P and of exchangeable Ca and Mg in the soil.
Resumo:
Abstract:The objective of this work was to evaluate the effect of nitrogen fertilization on the growth and yield of arracacha (Arracacia xanthorrhiza), as well as on the plant's nutrient uptake, distribution, and removal. The experiment was carried out in a typical Oxisol, with sandy texture. A randomized complete block design was used, with four replicates. The treatments consisted of five N rates: 0, 50, 100, 200, and 400 kg ha-1. The plots were composed of three 8-m-length rows, spaced at 0.60 m between rows and 0.40 m between plants. The plants were harvested after an 8-month cycle. Nitrogen fertilization significantly increased the proportion of N and S accumulated in stems, and of Ca, Mg, Fe, and Mn in leaves. N supply increased Zn distribution to stems and leaves, whereas high N rates increased Cu allocation to stems more than to the rootstock. High N rates increase plant dry matter (DM) production and nutrient uptake and removal, but do not result in the greatest yield due to the greater development of leaves and stems, and to the lower allocation of DM in storage roots.
Resumo:
There is a lack of information about fertilization of pineapple grown in the State of São Paulo, Brazil. So a field experiment with pineapple 'Smooth Cayenne' was carried out to study the effects of NPK rates on yield and fruit quality. The trial was located on an Alfisol in the central part of the State of São Paulo (Agudos county). The experimental design was an incomplete NPK factorial, with 32 treatments set up in two blocks. The P was applied only at planting, at the rates of 0; 80; 160 and 320 kg/ha of P2 0(5), as superphosphate. The N and K2O rates were 0; 175; 350, and 700 kg/ha, applied as urea and potassium chloride, respectively, divided in four applications during the growth period. Response functions were adjusted to yield or to fruit characteristics in order to estimate the nutrient rates required to reach maximum values. The results showed quadratic effects of N and K on yield and a maximum of 72 t/ha of fresh fruit was attained with rates of 498 and 394 kg/ha, respectively of N and K2O. In order to reach the maximum fruit size, and to improve the percentage of first class fruit (mass greater than 2.6 kg), were necessary rates of N and K respectively 11 and 43 % higher than those for maximum yield. No effect of P rates was observed on pineapple plant growth, despite the low availability of this nutrient in the soil. The effect of N rates was negative on total soluble solids and total acidity while the opposite occurred with K, which increased also the content of vitamin C. High yield and fruit size were closely related to N and K concentrations in the leaves.
Resumo:
A field experiment with pineapple (Smooth Cayenne) was carried out on an Ultisol located in the city of Agudos (22º30'S; 49º03'W), in the state of São Paulo, Brazil, with the objective of investigating the effects of rates and sources of potassium fertilizer on plant growth and fruit yield. The experiment was a complete factorial design (4x3) with four rates (0, 175, 350, and 700 kg ha-1 of K2O) and three combinations of K sources (100% KCl, 100% K2SO4, and 40% K2SO4 + 60% KCl). Plant growth and fruit yield were evaluated. Biomass accumulation of pineapple plants was impaired by chlorine added with potassium chloride. Fruit yield increased with potassium fertilization. At high rates of K application, fertilization with K2SO4 showed better results than with KCl. Detrimental effects of KCl were associated with excess of chlorine.
Resumo:
A field experiment was carried out on an Ultisol located at the city of Agudos (22º30'S; 49º03'W), in the state of São Paulo, Brazil, in order to determine the effects of rates and sources of potassium fertilizer on nutritional status of 'Smooth Cayenne' pineapple and on some soil chemical properties. The experiment was a complete factorial design with four rates (0, 175, 350, and 700 kg ha-1 of K2O) and three combinations of K sources (100% KCl, 100% K2SO4 and 40% K2SO4 + 60% KCl). Soil samples were taken from the depths 0-20 cm, 20-40 cm and 40-60 cm at planting and 14 months after. Nutritional status of pineapple plants was assessed by means of tissue analysis. Soil K availability increased with application of K fertilizer, regardless of K sources. Soil chlorine and Cl concentration in pineapple leaves increased with application of KCl or K2SO4+KCl. Plant uptake of potassium was shaped by soil K availability and by the application rates of K fertilizer, independently of K sources.