77 resultados para Aeration rate and Agitation speed


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Applications of phosphogypsum (PG) provide nutrients to the soil and reduce Al3+ activity, favoring soil fertility and root growth, but allow Mg2+ mobilization through the soil profile, resulting in variations in the PG rate required to achieve the optimum crop yield. This study evaluated the effect of application rates and splitting of PG on soil fertility of a Typic Hapludox, as well as the influence on annual crops under no-tillage. Using a (4 × 3) + 1 factorial structure, the treatments consisted of four PG rates (3, 6, 9, and 12 Mg ha-1) and three split applications (P1 = 100 % in 2009; P2 = 50+50 % in 2009 and 2010; P3 = 33+33+33 % in 2009, 2010 and 2011), plus a control without PG. The soil was sampled six months after the last PG application, in stratified layers to a depth of 0.8 m. Corn, wheat and soybean were sown between November 2011 and December 2012, and leaf samples were collected for analysis when at least 50 % of the plants showed reproductive structures. The application of PG increased Ca2+ concentrations in all sampled soil layers and the soil pH between 0.2 and 0.8 m, and reduced the concentrations of Al3+ in all layers and of Mg2+ to a depth of 0.6 m, without any effect of splitting the applications. The soil Ca/Mg ratio increased linearly to a depth of 0.6 m with the rates and were found to be higher in the 0.0-0.1 m layer of the P2 and P3 treatments than without splitting (P1). Sulfur concentrations increased linearly by application rates to a depth of 0.8 m, decreasing in the order P3>P2>P1 to a depth of 0.4 m and were higher in the treatments P3 and P2 than P1 between 0.4-0.6 m, whereas no differences were observed in the 0.6-0.8 m layer. No effect was recorded for K, P and potential acidity (H+Al). The leaf Ca and S concentration increased, while Mg decreased for all crops treated with PG, and there was no effect of splitting the application. The yield response of corn to PG rates was quadratic, with the maximum technical efficiency achieved at 6.38 Mg ha-1 of PG, while wheat yield increased linearly in a growing season with a drought period. Soybean yield was not affected by the PG rate, and splitting had no effect on the yield of any of the crops. Phosphogypsum improved soil fertility in the profile, however, Mg2+ migrated downwards, regardless of application splitting. Splitting the PG application induced a higher Ca/Mg ratio in the 0.0-0.1 m layer and less S leaching, but did not affect the crop yield. The application rates had no effect on soybean yield, but were beneficial for corn and, especially, for wheat, which was affected by a drought period during growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth and biomass allocation responses of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola were compared for plants grown outdoors, in pots, in full sunlight and those shaded to 30% of full sunlight over a 30day period. The objective was to evaluate the acclimation capacity of these species to low light. Both species were able to quickly develop phenotypic adjustments in response to low light. Specific leaf area and leaf area ratio were higher for low-light plants during the entire experimental period. Low-light plants allocated significantly less biomass to root and more to leaf tissue than high-light plants. However, the biomass allocation pattern to culms was different for the two species under low light: it increased in B. brizantha, but decreased in B. humidicola, probably as a reflection of the growth habits of these species. Relative growth rate and tillering were higher in high-light plants. Leaf elongation rate was significantly increased on both species under low light; however, the difference between treatments was higher in B. brizantha. These results are discussed in relation to the pasture management implications.