102 resultados para 2016 Crop Condition
Resumo:
Integrated crop-livestock systems (ICLs) are a viable strategy for the recovery and maintenance of soil characteristics. In the present study, an ICL experiment was conducted by the Instituto Agronômico do Paraná in the municipality of Xambre, Parana (PR), Brazil, to evaluate the effects of various grazing intensities. The objective of the present study was to quantify the levels of microbial biomass carbon (MBC) and soil enzymatic activity in an ICL of soybean (summer) and Brachiaria ruziziensis (winter), with B. ruziziensis subjected to various grazing intensities. Treatments consisted of varying pasture heights and grazing intensities (GI): 10, 20, 30, and 40 cm (GI-10, GI-20, GI-30, and GI-40, respectively) and a no grazing (NG) control. The microbial characteristics analysed were MBC, microbial respiration (MR), metabolic quotient (qCO2), the activities of acid phosphatase, β-glucosidase, arylsuphatase, and cellulase, and fluorescein diacetate (FDA) hydrolysis. Following the second grazing cycle, the GI-20 treatment (20-cm - moderate) grazing intensity) contained the highest MBC concentrations and lowest qCO2 concentrations. Following the second soybean cycle, the treatment with the highest grazing intensity (GI-10) contained the lowest MBC concentration. Soil MBC concentrations in the pasture were favoured by the introduction of animals to the system. High grazing intensity (10-cm pasture height) during the pasture cycle may cause a decrease in soil MBC and have a negative effect on the microbial biomass during the succeeding crop. Of all the enzymes analyzed, only arylsuphatase and cellulase activities were altered by ICL management, with differences between the moderate grazing intensity (GI-20) and no grazing (NG) treatments.
Resumo:
Soil management, in terms of tillage and cropping systems, strongly influences the biological properties of soil involved in the suppression of plant diseases. Fungistasis mediated by soil microbiota is an important component of disease-suppressive soils. We evaluated the influence of different management systems on fungistasis against Fusarium graminearum, the relationship of fungistasis to the bacterial profile of the soil, and the possible mechanisms involved in this process. Samples were taken from a long-term experiment set up in a Paleudult soil under conventional tillage or no-tillage management and three cropping systems: black oat (Avena strigose L.) + vetch (Vicia sativa L.)/maize (Zea mays L.) + cowpea (Vigna sinensis L.), black oat/maize, and vetch/maize. Soil fungistasis was evaluated in terms of reduction of radial growth of F. graminearum, and bacterial diversity was assessed using ribosomal intergenic spacer analysis (RISA). A total of 120 bacterial isolates were obtained and evaluated for antibiosis, and production of volatile compounds and siderophores. No-tillage soil samples showed the highest level of F. graminearum fungistasis by sharply reducing the development of this pathogen. Of the cropping systems tested, the vetch + black oat/maize + cowpea system showed the highest fungistasis and the oat/maize system showed the lowest. The management system also affected the genetic profile of the bacteria isolated, with the systems from fungistatic soils showing greater similarity. Although there was no clear relationship between soil management and the characteristics of the bacterial isolates, we may conclude that antibiosis and the production of siderophores were the main mechanisms accounting for fungistasis.
Resumo:
Farmers must carefully choose the cultivar to be grown for a successful carrot crop. The yield potential of the cultivar may influence nutrient demand and should be known to plan for fertilization application. The aim of this study was to evaluate the cultivar effect on carrot yield and on the nutrient content and quantities allocated to leaves and roots. Three experiments were set up in two crop seasons in Rio Paranaíba, MG, Brazil. In the first season, typical summer, 10 summer cultivars were sown. In the second season, summer-winter (transition), two experiments were set up, one with summer cultivars and the other with winter cultivars. The treatments consisted of the carrot cultivars distributed in randomized blocks with four replications. Fresh and dry matter of the roots and leaves was quantified. Yield was calculated based on fresh matter of the roots. The nutrient content in leaves and roots was determined at the time of harvest. These contents and the dry matter production of roots and leaves were used to calculate nutrient uptake and export. The greatest average for total and commercial yield occurred in the crop under summer conditions. Extraction of N and K for most of the cultivars in the three experiments went beyond the amounts applied through fertilizers. Thus, there was contribution of nutrients from the soil to obtain the yields observed. However, the amount of P taken up was considerably less than that applied. This implies that soil P fertility will increase after cropping. The crop season and the cultivars influenced yield, nutrient content in the leaves and roots, and extraction and export of nutrients by the carrot crop.
Resumo:
Soil aggregation and the distribution of total organic carbon (TOC) may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS) and conventional tillage system (CTS, one plowing and two disking). This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments) were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum). An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 %) than fallow plus CTS (ranging from 74.62 to 85.94 %). Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.
Liming in Agricultural Production Models with and Without the Adoption of Crop-Livestock Integration
Resumo:
ABSTRACT Perennial forage crops used in crop-livestock integration (CLI) are able to accumulate large amounts of straw on the soil surface in no-tillage system (NTS). In addition, they can potentially produce large amounts of soluble organic compounds that help improving the efficiency of liming in the subsurface, which favors root growth, thus reducing the risks of loss in yield during dry spells and the harmful effects of “overliming”. The aim of this study was to test the effects of liming on two models of agricultural production, with and without crop-livestock integration, for 2 years. Thus, an experiment was conducted in a Latossolo Vermelho (Oxisol) with a very clayey texture located in an agricultural area under the NTS in Bandeirantes, PR, Brazil. Liming was performed to increase base saturation (V) to 65, 75, and 90 % while one plot per block was maintained without the application of lime (control). A randomized block experimental design was adopted arranged in split-plots and four plots/block, with four replications. The soil properties evaluated were: pH in CaCl2, soil organic matter (SOM), Ca, Mg, K, Al, and P. The effects of liming were observed to a greater depth and for a long period through mobilization of ions in the soil, leading to a reduction in SOM and Al concentration and an increase in pH and the levels of Ca and Mg. In the first crop year, adoption of CLI led to an increase in the levels of K and Mg and a reduction in the levels of SOM; however, in the second crop year, the rate of decline of SOM decreased compared to the decline observed in the first crop year, and the level of K increased, whereas that of P decreased. The extent of the effects of liming in terms of depth and improvement in the root environment from the treatments were observed only partially from the changes observed in the chemical properties studied.
Resumo:
ABSTRACT The literature on fertilization for carrot growing usually recommends nutrient application rates for yield expectations lower than the yields currently obtained. Moreover, the recommendation only considers the results of soil chemical analysis and does not include effects such as crop residues or variations in yield levels. The aim of this study was to propose a fertilizer recommendation system for carrot cultivation (FERTICALC Carrot) which includes consideration of the nutrient supply by crop residues, variation in intended yield, soil chemical properties, and the growing season (winter or summer). To obtain the data necessary for modeling nutritional requirements, 210 carrot production stands were sampled in the region of Alto Paranaíba, State of Minas Gerais, Brazil. The dry matter content of the roots, the coefficient of biological utilization of nutrients in the roots, and the nutrient harvest index for summer and winter crops were determined for these samples. To model the nutrient supply by the soil, the literature was surveyed in regard to this theme. A modeling system was developed for recommendation of macronutrients and B. For cationic micronutrients, the system only reports crop nutrient export and extraction. The FERTICALC which was developed proved to be efficient for fertilizer recommendation for carrot cultivation. Advantages in relation to official fertilizer recommendation tables are continuous variation of nutrient application rates in accordance with soil properties and in accordance with data regarding the extraction efficiency of modern, higher yielding cultivars.
Resumo:
ABSTRACT Increasing attention has recently been given to sweet sorghum as a renewable raw material for ethanol production, mainly because its cultivation can be fully mechanized. However, the intensive use of agricultural machinery causes soil structural degradation, especially when performed under inadequate conditions of soil moisture. The aims of this study were to evaluate the physical quality of aLatossolo Vermelho Distroférrico (Oxisol) under compaction and its components on sweet sorghum yield forsecond cropsowing in the Brazilian Cerrado (Brazilian tropical savanna). The experiment was conducted in a randomized block design, in a split plot arrangement, with four replications. Five levels of soil compaction were tested from the passing of a tractor at the following traffic intensities: 0 (absence of additional compaction), 1, 2, 7, and 15 passes over the same spot. The subplots consisted of three different sowing times of sweet sorghum during the off-season of 2013 (20/01, 17/02, and 16/03). Soil physical quality was measured through the least limiting water range (LLWR) and soil water limitation; crop yield and technological parameters were also measured. Monitoring of soil water contents indicated a reduction in the frequency of water content in the soil within the limits of the LLWR (Fwithin) as agricultural traffic increased (T0 = T1 = T2>T7>T15), and crop yield is directly associated with soil water content. The crop sown in January had higher industrial quality; however, there was stalk yield reduction when bulk density was greater than 1.26 Mg m-3, with a maximum yield of 50 Mg ha-1 in this sowing time. Cultivation of sweet sorghum as a second crop is a promising alternative, but care should be taken in cultivation under conditions of pronounced climatic risks, due to low stalk yield.
Resumo:
ABSTRACT Investigations into water potentials in the soil-plant system are of great relevance in environments with abiotic stresses, such as salinity and drought. An experiment was developed using bell pepper in a Neossolo Flúvico (Fluvent) irrigated with water of six levels of electrical conductivity (0, 1, 3, 5, 7 and 9 dS m-1) by using exclusively NaCl and by simulating the actual condition (using a mixture of salts). The treatments were arranged in a randomized block design, in a 6 × 2 factorial arrangement, with four replicates. Soil matric (Ψm) and osmotic (Ψo) potentials were determined 70 days after transplanting (DAT). Soil total potential was considered as the sum of Ψm and Ψo. Leaf water (obtained with the Scholander Chamber) and osmotic potentials were determined before sunrise (predawn) and at noon at 42 and 70 DAT. There were no significant differences between the salt sources used in the irrigation water for soil and plant water potentials. The supply of salts to the soil through irrigation water was the main factor responsible for the decrease in Ψo in the soil and in bell pepper leaves. The total potential of bell pepper at predawn reached values of -1.30 and -1.33 MPa at 42 and 70 DAT, respectively, when water of 9 dS m-1 was used in the irrigation. The total potential at noon reached -2.19 MPa. The soil subjected to the most saline treatment reached a water potential of -1.20 MPa at 70 DAT. There was no predawn equilibrium between the total water potentials of the soil and the plant, indicating that soil potential cannot be considered similar to that of the plant. The determination of the osmotic potential in the soil solution should not be neglected in saline soils, since it has strong influence on the calculation of the total potential.
Resumo:
ABSTRACT Trichoderma species are non-pathogenic microorganisms that protect against fungal diseases and contribute to increased crop yields. However, not all Trichoderma species have the same effects on crop or a pathogen, whereby the characterization and identification of strains at the species level is the first step in the use of a microorganism. The aim of this study was the identification – at species level – of five strains of Trichoderma isolated from soil samples obtained from garlic and onion fields located in Costa Rica, through the analysis of the ITS1, 5.8S, and ITS2 ribosomal RNA regions; as well as the determination of their individual antagonistic ability over S. cepivorum Berkeley. In order to distinguish the strains, the amplified products were analyzed using MEGA v6.0 software, calculating the genetic distances through the Tamura-Nei model and building the phylogenetic tree using the Maximum Likelihood method. We established that the evaluated strains belonged to the species T. harzianum and T. asperellum; however it was not possible to identify one of the analyzed strains based on the species criterion. To evaluate their antagonistic ability, the dual culture technique, Bell’s scale, and the percentage inhibition of radial growth (PIRG) were used, evidencing that one of the T. asperellum isolates presented the best yields under standard, solid fermentation conditions.
Resumo:
ABSTRACT Changes in soil physical properties due to different management systems occur slowly, and long-term studies are needed to assess soil quality. The objectives of this study were to evaluate the effects of soil management systems and liming methods on the physical properties of a Latossolo Bruno Alumínico típico (Hapludox). A long-term experiment that began in 1978 with conventional and no-tillage systems was assessed. In addition, different liming methods (no lime, incorporated lime, and lime on the soil surface) have been applied since 1987 and were also evaluated in this study. Moreover, an area of native forest was evaluated and considered a reference for the natural condition of the soil. Soil physical properties were evaluated in layers to a depth of 1.00 m. Compared to native forest, the conventional tillage and no-tillage systems had higher soil bulk density, penetration resistance, and microporosity, and lower aggregate stability and macroporosity. Compared to the conventional tillage system, long-term no-tillage improved the structure of the Hapludox, as evidenced by increased microporosity and aggregate stability, especially in the soil surface layer. In no-tillage with lime applications sporadically incorporated, soil physical properties did not differ from no-tillage without lime and with lime applied on the soil surface, indicating that this practice maintains the physical quality of soil under no-tillage. Liming in a conventional tillage system improved soil aggregation and reduces penetration resistance in the soil layers near the soil surface. No-tillage was the main practice related to improvement of soil physical quality, and liming methods did not influence soil physical properties in this soil management system.
Resumo:
ABSTRACT Univariate methods for diagnosing nutritional status such as the sufficiency range and the critical level for garlic crops are very susceptible to the effects of dilution and accumulation of nutrients. Therefore, this study aimed to establish bivariate and multivariate norms for this crop using the Diagnosis and Recommendation Integrated System (DRIS) and Nutritional Composition Diagnosis (CND), respectively. The criteria used were nutritional status and the sufficiency range, and then the diagnoses were compared. The study was performed in the region of Alto Paranaíba, MG, Brazil, during the crop seasons 2012 and 2013. Samples comprised 99 commercial fields of garlic, cultivated with the cultivar “Ito” and mostly established in Latossolo Vermelho-Amarelo Distrófico (Oxisol). Copper and K were the nutrients with the highest number of fields diagnosed as limiting by lack (LF) and limiting by excess (LE), respectively. The DRIS method presented greater tendency to diagnose LF, while the CND tended towards LE. The sufficiency range of both methods presented narrow ranges in relation to those suggested by the literature. Moreover, all ranges produced by the CND method provided narrower ranges than the DRIS method. The CND method showed better performance than DRIS in distinguishing crop yield covered by different diagnoses. Turning to the criterion of evaluation, the study found that nutritional status gave a better performance than sufficiency range in terms of distinguishing diagnoses regarding yield.
Resumo:
ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes) – BRAQ, pearl millet (Pennisetum glaucum) – MIL, jack bean (Canavalia ensiformis) – JB, blend (50 % each) of jack bean + millet (JB/MIL), and spontaneous vegetation (SPV). The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC) content, light fraction (LF), and the particulate organic C (POC), and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1) in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.
Resumo:
ABSTRACT The use of fire to prepare agricultural areas is a technique still used by small farmers in eastern Amazon. This type of management changes the dynamics of soil nutrients, especially phosphorus, which constitutes the most limiting nutrient for crop production in tropical soils. This study was carried out to evaluate changes in phosphorus forms in an Argissolo Amarelo Distrófico (Ultisol) submitted to burning and trituration of secondary forest in eastern Amazon. The evaluated systems were: slash-and-burn of vegetation; slash-and-mulch of vegetation; and secondary vegetation. The labile, moderately labile, moderately recalcitrant, available and total phosphorus fractions were assessed at the soil depths of 0.00-0.05, 0.05-0.10 and 0.10-0.20 m. The results showed a predominance of soluble P in acid (moderately labile P) over other forms in all management systems. The management systems influence the content and distribution of the forms of P, where the slash-and-mulch system presented the prevalence of the labile fraction, and the slash-and-burn system contained less labile forms. The slash-and-mulch system favored the accumulation of labile P and total organic P.
Resumo:
ABSTRACT The use of cover crops has recently increased and represents an essential practice for the sustainability of no-tillage systems in the Cerrado region. However, there is little information on the effects of nitrogen fertilization and cover crop use on nitrogen soil fractions. This study assessed changes in the N forms in soil cropped to cover crops prior to corn growing. The experiment consisted of a randomized complete block design arranged in split-plots with three replications. Cover crops were tested in the plots, and the N topdressing fertilization was assessed in the subplots. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis, Canavalia brasiliensis M. ex Benth, Cajanus cajan (L.) Millsp, and Sorghum bicolor (L.) Moench. After corn harvesting, the soil was sampled at depths of 0.00-0.10 and 0.10-0.20 m. The cover crops showed different effects at different soil depths. The soil cultivated with U. ruziziensis showed higher contents of total-N and particulate-N than the soil cultivated with C. cajan. Particulate-N was the most sensitive to changes in the soil management among the fractions of N assessed. The soil under N topdressing showed a lower content of available-N in the 0.10-0.20 m layer, which may be caused by the season in which the sampling was conducted or the greater uptake of the available-N by corn.
Resumo:
ABSTRACT The concept of soil physical quality (SPQ) is currently under discussion, and an agreement about which soil physical properties should be included in the SPQ characterization has not been reached. The objectives of this study were to evaluate the ability of SPQ indicators based on static and dynamic soil properties to assess the effects of two loosening treatments (chisel plowing to 0.20 m [ChT] and subsoiling to 0.35 m [DL]) on a soil under NT and to compare the performance of static- and dynamic-based SPQ indicators to define soil proper soil conditions for soybean yield. Soil sampling and field determinations were carried out after crop harvest. Soil water retention curve was determined using a tension table, and field infiltration was measured using a tension disc infiltrometer. Most dynamic SPQ indicators (field saturated hydraulic conductivity, K0, effective macroporosity, εma, total connectivity and macroporosity indexes [CwTP and Cwmac]) were affected by the studied treatments, and were greater for DL compared to NT and ChT (K0 values were 2.17, 2.55, and 4.37 cm h-1 for NT, ChT, and DL, respectively). However, static SPQ indicators (calculated from the water retention curve) were not capable of distinguishing effects among treatments. Crop yield was significantly lower for the DL treatment (NT: 2,400 kg ha-1; ChT: 2,358 kg ha-1; and DL: 2,105 kg ha1), in agreement with significantly higher values of the dynamic SPQ indicators, K0, εma, CwTP, and Cwmac, in this treatment. The results support the idea that SPQ indicators based on static properties are not capable of distinguishing tillage effects and predicting crop yield, whereas dynamic SPQ indicators are useful for distinguishing tillage effects and can explain differences in crop yield when used together with information on weather conditions. However, future studies, monitoring years with different weather conditions, would be useful for increasing knowledge on this topic.