160 resultados para 1H and 13C NMR
Resumo:
During the last five decades, as a result of an interaction between natural product chemistry, synthetic organic chemistry, molecular biology and spectroscopy, scientists reached an extraordinary level of comprehension about the natural processes by which living organisms build up complex molecules. In this context, 13C nuclear magnetic resonance spectroscopy, allied with isotopic labeling, played a determinant role. Nowadays, the widespread use of modern NMR techniques allows an even more detailed picture of the biochemical steps by accurate manipulation of the atomic nuclei. This article focuses on the development of such techniques and their impact on biosynthetic studies.
Resumo:
Bioguided fractionation of the extracts from leaves of Piper mollicomum and Piper lhotzkyanum against the fungi Cladosporium cladosporioides and C. sphaerospermum afforded seven bioactive compounds, four being chromenes: methyl 2,2-dimethyl-2H-chromene-6-carboxylate, methyl 8-hydroxy-2,2-dimethyl-2H-chromene-6-carboxylate, 2-methyl-2-[4'-methyl-3'-pentenyl]-2H-1-benzopyran-6-carboxylic acid, 2,2-dimethyl-2H-chromene-6-carboxylic acid, one a dihydrochalcone: 2',6'-dihydroxy-4'-methoxydihydrochalcone, and two flavanones: 7-methoxy-5,4'-dihydroxy-flavanone and 7,4'-dimethoxy-5-hydroxy-flavanone. The structures of the bioactive isolated derivatives were elucidated by interpretation of their NMR data [¹H and 13C (BBD, DEPT 135º)], and mass spectral data as well as by comparison with data described in the literature.
Resumo:
The Steady-State Free Precession (SSFP) sequence has been widely used in low-field and low-resolution imaging NMR experiments to increase the signal-to-noise ratio (s/n) of the signals. Here, we analyzed the Scrambled Steady State - SSS and Unscrambled Steady State - USS sequences to suppress phase anomalies and sidebands of the 13C NMR spectrum acquired in the SSFP regime. The results showed that the application of the USS sequence allowed a uniform distribution of the time interval between pulses (Tp), in the established time range, allowing a greater suppression of phase anomalies and sidebands, when compared with the SSS sequence.
Resumo:
Four eudesmane-type sesquiterpenes, costic acid (1), 12-carboxyeudesman-3,11(13)-diene (2), viscic acid (3), 3-oxo-γ-costic acid (4) and two rearranged eudesmane derivatives, 3α-hydroxyisoiphion-11(13)-en-12-oic acid (5) and 5β-hydroxy-4-oxo-11(13)-dehydroiphionan-12-oic acid (6), in addition to (-)-epicatechin, have been isolated from the trunk bark of Nectandra cissiflora. This is the first reported occurrence in the Lauraceae of 3-6. The structures of the isolated compounds have been established on the basis of 1D and 2D NMR spectroscopic techniques. The 13C NMR assignments of 3, 5 and 6 are given here for the first time, as well as some corrections to the previously reported chemical shift assignments of 4.
Resumo:
Inclusion compound of rhodium(II) citrate with β-cyclodextrin in a 1:1 molar ratio was prepared using freeze-drying method. X-ray diffactometry, thermal analysis (TG/DTG/DSC), infrared and ¹H-NMR with ¹H spin lattice relaxation (¹H T1) measurements and 13C techniques were used to characterize the system prepared. The results indicated the formation of inclusion or association compounds between rhodium(II) citrate and β-cyclodextrin.
Resumo:
The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.
Resumo:
Cyclolignan (+)-lyoniresinol (1), veratric acid (2), vanillic acid (3), lupeol, oleanolic acid, 3β-hydroxy-urs-11-en-28,13β-lactone (4), the mixture of α- and β-amyrin, trans-polyisoprene, and β-sitosterol were isolated from the leaves of Maytenus phyllanthoides. The structures of the isolated compounds were established based on spectroscopic data, mainly ¹H and 13C nuclear magnetic resonance (NMR). Compound 1, its acetate analog 1a, and compounds 2, 3, and 4 were tested against Trichomonas vaginalis. (+)-Lyoniresinol showed activity corresponding to IC50 17.57 µM. This is the first report on the occurrence of 3β-hydroxy-urs-11-en-28,13β-lactone (4) in the Celastraceous family and lyoniresinol in the Maytenus genus, and on the antitrichomonal activity of lyoniresinol.
Resumo:
(E)-2-{[(2-Aminopyridin-3-yl)imino]-methyl}-4,6-di-tert-butyl-phenol ( 3: ), a ligand containing an intramolecular hydrogen bond, was prepared according to a previous literature report, with modifications, and was characterized by UV-vis, FTIR, ¹H-NMR, 13C-NMR, HHCOSY, TOCSY and cyclic voltammetry. Computational analyses at the level of DFT and TD-DFT were performed to study its electronic and molecular structures. The results of these analyses elucidated the behaviors of the UV-vis and electrochemical data. Analysis of the transitions in the computed spectrum showed that the most important band is primarily composed of a HOMO→LUMO transition, designated as an intraligand (IL) charge transfer.
Resumo:
Sixteen dialkylphosphorylhydrazones were synthesized by condensation of phosphorylhydrazines with substituted isatins. Products were characterized by FTIR, ¹H-NMR, 13C-NMR, and 31P-NMR. Fungicidal activities of these compounds against Rhizoctonia solani and Fusarium oxysporum were also evaluated. Some compounds inhibited the growth of Rhizoctonia solani and Fusarium oxysporum by 43% and 51%, respectively. These compounds exhibited no effects on germination of lettuce seeds (Lactuca sativa L).
Resumo:
A new sarpagine-type alkaloid, Na-methylrauflorine (1), was isolated from Rauvolfia capixabaetogether with isoreserpiline (2),Nb-oxide-isoreserpiline (3), ajmalicine (4), perakine (5) and vinorine (6) alkaloids. These compounds were characterized based on their spectral data basis, mainly one- (1H, 13C, APT) and two-dimensional(1H-1H-COSY, 1H-1H-NOESY, HMQC and HMBC) NMR, and mass spectra, also involving comparison with data from the literature.
The secondary alcohol and aglycone metabolites of doxorubicin alter metabolism of human erythrocytes
Resumo:
Anthracyclines, a class of antitumor drugs widely used for the treatment of solid and hematological malignancies, cause a cumulative dose-dependent cardiac toxicity whose biochemical basis is unclear. Recent studies of the role of the metabolites of anthracyclines, i.e., the alcohol metabolite doxorubicinol and aglycone metabolites, have suggested new hypotheses about the mechanisms of anthracycline cardiotoxicity. In the present study, human red blood cells were used as a cell model. Exposure (1 h at 37ºC) of intact human red blood cells to doxorubicinol (40 µM) and to aglycone derivatives of doxorubicin (40 µM) induced, compared with untreated red cells: i) a ~2-fold stimulation of the pentose phosphate pathway (PPP) and ii) a marked inhibition of the red cell antioxidant enzymes, glutathione peroxidase (~20%) and superoxide dismutase (~60%). In contrast to doxorubicin-derived metabolites, doxorubicin itself induced a slighter PPP stimulation (~35%) and this metabolic event was not associated with any alteration in glutathione reductase, glutathione peroxidase, catalase or superoxide dismutase activity. Furthermore, the interaction of hemoglobin with doxorubicin and its metabolites induced a significant increase (~22%) in oxygen affinity compared with hemoglobin incubated without drugs. On the basis of the results obtained in the present study, a new hypothesis, involving doxorubicinol and aglycone metabolites, has been proposed to clarify the mechanisms responsible for the doxorubicin-induced red blood cell toxicity.
Resumo:
ABSTRACT Increasing attention has been given, over the past decades, to the production of exopolysaccharides (EPS) from rhizobia, due to their various biotechnological applications. Overall characterization of biopolymers involves evaluation of their chemical, physical, and biological properties; this evaluation is a key factor in understanding their behavior in different environments, which enables researchers to foresee their potential applications. Our focus was to study the EPS produced by Mesorhizobium huakuii LMG14107, M. loti LMG6125, M. plurifarium LMG11892,Rhizobium giardini bv. giardiniH152T, R. mongolense LMG19141, andSinorhizobium (= Ensifer)kostiense LMG19227 in a RDM medium with glycerol as a carbon source. These biopolymers were isolated and characterized by reversed-phase high-performance liquid chromatography (RP-HPLC), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. Maximum exopolysaccharide production was 3.10, 2.72, and 2.50 g L-1for the strains LMG6125, LMG19227, and LMG19141, respectively. The purified EPS revealed prominent functional reactive groups, such as hydroxyl and carboxylic, which correspond to a typical heteropolysaccharide. The EPS are composed primarily of galactose and glucose. Minor components found were rhamnose, glucuronic acid, and galacturonic acid. Indeed, from the results of techniques applied in this study, it can be noted that the EPS are species-specific heteropolysaccharide polymers composed of common sugars that are substituted by non-carbohydrate moieties. In addition, analysis of these results indicates that rhizobial EPS can be classified into five groups based on ester type, as determined from the 13C NMR spectra. Knowledge of the EPS composition now facilitates further investigations relating polysaccharide structure and dynamics to rheological properties.
Resumo:
The synthesis of two new spirostanic analogs of the natural occurring brassinosteroid 6-desoxocastasterone (1) is described. The scheme consists in the formation and elimination of tigogenin mesylate followed by catalytic dihydroxylation of the resulting D2-steroid (3) and acetylation of the 2a, 3a-diol introduced.Treatment diacetate (5) with NaNO2/BF3.Et2O and chromatography in alumina led to a 23-keto (6) which on reduction produced the 23S alcohol (8) as major product. Saponification of the 2a, 3a-diacetoxy-23-keto compound (6) and the 2a,3a-diacetoxy-23-hydroxy compound (8) led to the spirobrasinosteroids (7) and (9).13C NMR and ¹H RMN characteristics derived from substitution at C23 are briefly discussed.
Resumo:
This study has shown that Eucalyptus tar and creosote can be used in phenolic adhesive formulations (resols) for wood products bonding. Some adhesives were prepared substituting 0; 17.7; 35.0 and 67.0% of the phenol by anhydrous tar and 0; 15.0 e 28.5% by creosote. In gluing Brazilian pine veneers, eucalypt tar and creosote based adhesives required longer pressing times for curing than conventional phenol-formaldehyde adhesives. By using 13C NMR, the number of carbons in side chains and hydroxyl, carbonyl, carboxyl and methoxyl groups related to 100 aromatic rings could be estimated in tar and creosote. In creosote, after reaction with excess formaldehyde in alkaline medium, only 0,28 hydroxymethyl groups was detected per phenolic ring. This low amount of hydroxymethylation explains the lack of reactivity in curing observed when creosote was introduced in a standard adhesive formulation.
Resumo:
This paper describes a chromatographic method to fractionate volatile oils and to identify their sesquiterpenic constituents. The fractionation process includes flash chromatography over silica gel and chromatography over silica gel/AgNO3, utilising pentane, CH2Cl2 and/or acetone as eluents. GC chromatograms were obtained in order to get the relative percentage of each constituent in the volatile oils, to get the retention time value of them as well as to analyse and combine the fractions eluted from the columns. Such procedure afford mixtures of sesquiterpenes which are analysed by GC/MS, 13C and ¹H NMR.