78 resultados para 124-775
Resumo:
Hydatid cyst fluid (HCF), somatic antigens (S-Ag) and excretory-secretory products (ES-Ag) of Echinococcus granulosus protoscoleces are used as the main antigenic sources for immunodiagnosis of human and dog echinococcosis. In order to determine their non-shared as well as their shared antigenic components, these extracts were studied by ELISA-inhibition and immunoblot-inhibition. Assays were carried out using homologous rabbit polyclonal antisera, human sera from individuals with surgically confirmed hydatidosis, and sera from dogs naturally infected with E. granulosus. High levels of cross-reactivity were observed for all antigenic extracts, but especially for ES-Ag and S-Ag. Canine antibodies evidenced lesser avidity for their specific antigens than antibodies from human origin. The major antigenic components shared by HCF, S-Ag, and ES-Ag have apparent molecular masses of 4-6, 20-24, 52, 80, and 100-104 kDa, including doublets of 41/45, 54/57, and 65/68 kDa. Non-shared polypeptides of each antigenic extract of E. granulosus were identified, having apparent masses of 108 and 78 kDa for HCF, of 124, 94, 83, and 75 kDa for S-Ag, and of 89, 66, 42, 39, 37, and 35 kDa for ES-Ag.
Resumo:
Raphidascaris (Sprentascaris) lanfrediae sp. nov. is described from the intestine of the freshwater fish Satanoperca jurupari (Heckel) (Cichlidae) from the Guamá River, state of Pará, Brazil. The prevalence in fish (n = 59) was 27% with intensity of one-124 (mean 16) nematodes per fish. The new species is characterized mainly by the markedly larger size of ventricular appendix in relation to the oesophagus, presence of short male caudal alae, 14-16 subventral pairs of preanal papillae and six pairs of postanal papillae.
Resumo:
Drug resistance is one of the major concerns regarding tuberculosis (TB) infection worldwide because it hampers control of the disease. Understanding the underlying mechanisms responsible for drug resistance development is of the highest importance. To investigate clinical data from drug-resistant TB patients at the Tropical Diseases Hospital, Goiás (GO), Brazil and to evaluate the molecular basis of rifampin (R) and isoniazid (H) resistance in Mycobacterium tuberculosis. Drug susceptibility testing was performed on 124 isolates from 100 patients and 24 isolates displayed resistance to R and/or H. Molecular analysis of drug resistance was performed by partial sequencing of the rpoB and katGgenes and analysis of the inhA promoter region. Similarity analysis of isolates was performed by 15 loci mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing. The molecular basis of drug resistance among the 24 isolates from 16 patients was confirmed in 18 isolates. Different susceptibility profiles among the isolates from the same individual were observed in five patients; using MIRU-VNTR, we have shown that those isolates were not genetically identical, with differences in one to three loci within the 15 analysed loci. Drug-resistant TB in GO is caused by M. tuberculosis strains with mutations in previously described sites of known genes and some patients harbour a mixed phenotype infection as a consequence of a single infective event; however, further and broader investigations are needed to support our findings.