852 resultados para Trypanosoma (Dutonella) vivax
Resumo:
In the 1950s, the strategy of adding chloroquine to food salt as a prophylaxis against malaria was considered to be a successful tool. However, with the development of Plasmodium resistance in the Brazilian Amazon, this control strategy was abandoned. More than 50 years later, asexual stage resistance can be avoided by screening for antimalarial drugs that have a selective action against gametocytes, thus old prophylactic measures can be revisited. The efficacy of the old methods should be tested as complementary tools for the elimination of malaria.
Resumo:
The global emergence of Plasmodium vivax strains resistant to chloroquine (CQ) since the late 1980s is complicating the current international efforts for malaria control and elimination. Furthermore, CQ-resistant vivax malaria has already reached an alarming prevalence in Indonesia, East Timor and Papua New Guinea. More recently, in vivo studies have documented CQ-resistant P. vivax infections in Guyana, Peru and Brazil. Here, we summarise the available data on CQ resistance across P. vivax-endemic areas of Latin America by combining published in vivo and in vitro studies. We also review the current knowledge regarding the molecular mechanisms of CQ resistance in P. vivax and the prospects for developing and standardising reliable molecular markers of drug resistance. Finally, we discuss how the Worldwide Antimalarial Resistance Network, an international collaborative effort involving malaria experts from all continents, might contribute to the current regional efforts to map CQ-resistant vivax malaria in South America.
Resumo:
Plasmodium vivax is the most widespread parasite causing malaria, being especially prevalent in the Americas and Southeast Asia. Children are one of the most affected populations, especially in highly endemic areas. However, there are few studies evaluating the therapeutic response of infants with vivax malaria. This study retrospectively evaluated the parasitaemia clearance in children diagnosed with vivax malaria during the first five days of exclusive treatment with chloroquine (CQ). Infants aged less than six months old had a significantly slower parasitaemia clearance time compared to the group of infants and children between six months and 12 years old (Kaplan-Meier survival analysis; Wilcoxon test; p = 0.004). The impaired clearance of parasitaemia in younger children with vivax malaria is shown for the first time in Latin America. It is speculated that CQ pharmacokinetics in young children with vivax malaria is distinct, but this specific population may also allow the detection of CQ-resistant parasites during follow-up, due to the lack of previous immunity.
Resumo:
Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.
Resumo:
Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4%) and in wild Alouatta clamitans monkeys (n = 20, 35%) from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease.
Resumo:
Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target.
Resumo:
This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.
Resumo:
The role played by different mammal species in the maintenance of Trypanosoma cruzi is not constant and varies in time and place. This study aimed to characterise the importance of domestic, wild and peridomestic hosts in the transmission of T. cruzi in Tauá, state of Ceará, Caatinga area, Brazil, with an emphasis on those environments colonised by Triatoma brasiliensis. Direct parasitological examinations were performed on insects and mammals, serologic tests were performed on household and outdoor mammals and multiplex polymerase chain reaction was used on wild mammals. Cytochrome b was used as a food source for wild insects. The serum prevalence in dogs was 38% (20/53), while in pigs it was 6% (2/34). The percentages of the most abundantly infected wild animals were as follows: Thrichomys laurentius 74% (83/112) and Kerodon rupestris 10% (11/112). Of the 749 triatomines collected in the household research, 49.3% (369/749) were positive for T. brasiliensis, while 6.8% were infected with T. cruzi (25/369). In captured animals, T. brasiliensis shares a natural environment with T. laurentius, K. rupestris, Didelphis albiventris, Monodelphis domestica, Galea spixii, Wiedomys pyrrhorhinos, Conepatus semistriatus and Mus musculus. In animals identified via their food source, T. brasiliensis shares a natural environment with G. spixii, K. rupestris, Capra hircus, Gallus gallus, Tropidurus oreadicus and Tupinambis merianae. The high prevalence of T. cruzi in household and peridomiciliar animals reinforces the narrow relationship between the enzootic cycle and humans in environments with T. brasiliensis and characterises it as ubiquitous.
Resumo:
The molecular basis of Plasmodium vivax chloroquine (CQ) resistance is still unknown. Elucidating the molecular background of parasites that are sensitive or resistant to CQ will help to identify and monitor the spread of resistance. By genotyping a panel of molecular markers, we demonstrate a similar genetic variability between in vitro CQ-resistant and sensitive phenotypes of P. vivax parasites. However, our studies identified two loci (MS8 and MSP1-B10) that could be used to discriminate between both CQ-susceptible phenotypes among P. vivax isolates in vitro. These preliminary data suggest that microsatellites may be used to identify and to monitor the spread of P. vivax-resistance around the world.
Resumo:
Immunological diagnostic methods for Trypanosoma cruzi depend specifically on the presence of antibodies and parasitological methods lack sensitivity during the chronic and “indeterminate” stages of the disease. This study performed a serological survey of 1,033 subjects from 52 rural communities in 12 of the 18 municipalities in the state of Querétaro, Mexico. We detected anti-T. cruzi antibodies using the following tests: indirect haemagglutination assay (IHA), indirect immunofluorescence assay (IFA), ELISA and recombinant ELISA (rELISA). We also performed Western blot (WB) analysis using iron superoxide dismutase (FeSOD), a detoxifying enzyme excreted by the parasite, as the antigen. Positive test results were distributed as follows: ELISA 8%, rELISA 6.2%, IFA and IHA 5.4% in both cases and FeSOD 8%. A comparative study of the five tests was undertaken. Sensitivity levels, specificity, positive and negative predictive values, concordance percentage and kappa index were considered. Living with animals, trips to other communities, gender, age, type of housing and symptomatology at the time of the survey were statistically analysed using SPSS software v.11.5. Detection of the FeSOD enzyme that was secreted by the parasite and used as an antigenic fraction in WBs showed a 100% correlation with traditional ELISA tests.
Resumo:
Trypanosoma cruzi infection may be caused by different strains with distinct discrete typing units (DTUs) that can result in variable clinical forms of chronic Chagas disease. The present study evaluates the immune response and cardiac lesions in dogs experimentally infected with different T. cruzi strains with distinct DTUs, namely, the Colombian (Col) and Y strains of TcI and TcII DTU, respectively. During infection with the Col strain, increased levels of alanine aminotransferase, erythrocytes, haematocrit and haemoglobin were observed. In addition, CD8+ T-lymphocytes isolated from the peripheral blood produced higher levels of interleukin (IL)-4. The latter suggests that during the acute phase, infection with the Col strain may remain unnoticed by circulating mononuclear cells. In the chronic phase, a significant increase in the number of inflammatory cells was detected in the right atrium. Conversely, infection with the Y strain led to leucopoenia, thrombopoenia, inversion of the ratio of CD4+/CD8+ T-lymphocytes and alterations in monocyte number. The Y strain stimulated the production of interferon-γ by CD4+ and CD8+ T-lymphocytes and IL-4 by CD8+ T-cells. In the chronic phase, significant heart inflammation and fibrosis were observed, demonstrating that strains of different DTUs interact differently with the host.
Resumo:
We present here three expression plasmids for Trypanosoma cruzi adapted to the Gateway® recombination cloning system. Two of these plasmids were designed to express trypanosomal proteins fused to a double tag for tandem affinity purification (TAPtag). The TAPtag and Gateway® cassette were introduced into an episomal (pTEX) and an integrative (pTREX) plasmid. Both plasmids were assayed by introducing green fluorescent protein (GFP) by recombination and the integrity of the double-tagged protein was determined by western blotting and immunofluorescence microscopy. The third Gateway adapted vector assayed was the inducible pTcINDEX. When tested with GFP, pTcINDEX-GW showed a good response to tetracycline, being less leaky than its precursor (pTcINDEX).
Resumo:
Trypanosoma cruzi strains from distinct geographic areas show differences in drug resistance and association between parasites genetic and treatment response has been observed. Considering that benznidazole (BZ) can reduce the parasite burden and tissues damage, even in not cured animals and individuals, the goal is to assess the drug response to BZ of T. cruzi II strains isolated from children of the Jequitinhonha Valley, state of Minas Gerais, Brazil, before treatment. Mice infected and treated with BZ in both phases of infection were compared with the untreated and evaluated by fresh blood examination, haemoculture, polymerase chain reaction, conventional (ELISA) and non-conventional (FC-ALTA) serologies. In mice treated in the acute phase, a significant decrease in parasitaemia was observed for all strains. Positive parasitological and/or serological tests in animals treated during the acute and chronic (95.1-100%) phases showed that most of the strains were BZ resistant. However, beneficial effect was demonstrated because significant reduction (p < 0.05%) and/or suppression of parasitaemia was observed in mice infected with all strains (acute phase), associated to reduction/elimination of inflammation and fibrosis for two/eight strains. BZ offered some benefit, even in not cured animals, what suggest that BZ use may be recommended at least for recent chronic infection of the studied region.
Resumo:
Chagas disease, caused by the intracellular protozoan Trypanosoma cruzi, is a serious health problem in Latin America. During this parasitic infection, the heart is one of the major organs affected. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. When cells are infected with T. cruzi, they develop an inflammatory response, in which cyclooxygenase-2 (COX-2) catalyses rate-limiting steps in the arachidonic acid pathway. However, how the parasite interaction modulates COX-2 activity is poorly understood. In this study, the H9c2 cell line was used as our model and we investigated cellular and biochemical aspects during the initial 48 h of parasitic infection. Oscillatory activity of COX-2 was observed, which correlated with the control of the pro-inflammatory environment in infected cells. Interestingly, subcellular trafficking was also verified, correlated with the control of Cox-2 mRNA or the activated COX-2 protein in cells, which is directly connected with the assemble of stress granules structures. Our collective findings suggest that in the very early stage of the T. cruzi-host cell interaction, the parasite is able to modulate the cellular metabolism in order to survives.
Resumo:
Rhodnius prolixus, a blood-sucking triatomine with domiciliary anthropophilic habits, is the main vector of Chagas disease. The current paradigm of Trypanosoma cruzi transmission in Columbia includes a sylvatic and domiciliary cycle co-existing with domestic and sylvatic populations of reservoirs. The aim of this study is to evaluate the population densities and relative abundance of triatomines and mammals that may be involved in the sylvatic cycle of Chagas disease to clarify the epidemiological scenario in an endemic area in the province of Casanare. Insect vectors on Attalea butyracea palms were captured using both manual searches and bait traps. The capture of mammals was performed using Sherman and Tomahawk traps. We report an infestation index of 88.5% in 148 palms and an index of T. cruzi natural infection of 60.2% in 269 dissected insects and 11.9% in 160 captured mammals. High population densities of triatomines were observed in the sylvatic environment and there was a high relative abundance of reservoirs in the area, suggesting a stable enzootic cycle. We found no evidence of insect domiciliation. Taken together, these observations suggest that eco-epidemiological factors shape the transmission dynamics of T. cruzi, creating diverse scenarios of disease transmission.