823 resultados para Solos - Carbono


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper, aluminum and iron concentrations were determined in four geochemical fractions of three different basaltic soils from the northwest region of the Parana State, Brazil. The fractions examined were the reducible manganese dioxide and amorphous iron oxide, crystaline iron oxide, organic and residual. Metal concentrations were determined in the extracts by flame atomic absorption spectrophotometry. High Fe concentrations were extracted from the crystalline iron oxide (>20%), as well as the amorphous iron oxide (>12%). Copper was extracted from the amorphous and crystalline iron oxides in the range 5 to 12%, but low concentrations were bound to organic matter. Low concentrations of aluminum were extracted (<8%) from the amorphous and crystaline iron oxides, and organic matter. High concentrations of aluminum were found in the residual fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the CCl4 degradation in aqueous solution by sonication with 40 kHz commercial ultrasonic bath was investigated. Sonochemical degradation of CCl4 occur by the cleavage of C-Cl bond into the cavitation bubbles. Oxidation reactions and the pH decreasing in the bulk solution during sonication were attributed to chlorine radicals produced by CCl4 sonolysis, leading to increase the chloride concentration. The formation of oxidizing agents was evaluated employing I- and Fe2+ ion solutions, converted to I2 and HIO, and Fe3+, respectively. The amount of chloride and hydronium ions produced after 3 min of irradiation was 11.52 and 12.19 mmol, respectively, suggesting that the same reaction was involved to produce these ions. Fe2+ oxidation and the pH variation were monitored to estimate chlorine radical formation rate in the presence (0.107 mumol s-1) and absence (0.092 mumol s-1) of metallic ion during the first minute of sonication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crude extracts of several vegetables such as peach (Prunus persica), yam (Alocasia macrorhiza), manioc (Manihot utilissima), artichoke (Cynara scolymus L), sweet potato (Ipomoea batatas (L.) Lam.), turnip (Brassica campestre ssp. rapifera), horseradish (Armoracia rusticana) and zucchini (Cucurbita pepo) were investigated as the source of peroxidase (POD: EC 1.11.1.7). Among those, zucchini (Cucurbita pepo) crude extract was found to be the best one. This enzyme in the presence of hydrogen peroxide catalyses the oxidation of paracetamol to N-acetyl-p-benzoquinoneimine which the electrochemical reduction back to paracetamol was obtained at a peak potential of ¾0.10V. A cyclic voltammetric study was performed by scanning the potential from + 0.5 to ¾ 0.5 V. The recovery of paracetamol from two samples ranged from 97.3 to 106% and a rectilinear calibration curve for paracetamol concentration from 1.2x10-4 to 2.5x10-3 mol L-1 (r=0.9965) were obtained. The detection limit was 6.9x10-5 mol L-1 and the relative standard deviation was less than 1.1% for a solution containing 2.5x10-3 mol L-1 paracetamol and 2.0x10-3 mol L-1 hydrogen peroxide (n=12). The results obtained for paracetamol in pharmaceutical products using the proposed biosensor and Pharmacopoeial procedures are in agreement at the 95% confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential extraction is not totally effective to dissolve distinct forms of trace elements. The extractive solution, for example, can dissolve less of the target fraction and more than another not wished fraction. The goal of this work is to compare the extraction of native iron with three sequential extraction methods of the heavy metals, using three soils with different physical chemistry characteristics: a histosol, an oxisol, and a mollisol. The results obtained in this work demonstrate that a smaller relation soil/extractor results in a larger extraction in almost all phases. The use of many stages of the sequential extraction, with the purpose of more association of the metal with different components of the soil, can result, among other things, in modification of the substratum by the action of the reagents used, besides reducing the selectivity of the more specific extractors. Readsorption and redistribution of the heavy metals could have happened with larger intensity in the fraction where hidroxilamine was used with higher temperature. Sequential extraction of iron, without enrichment of soil samples, in the respective fractions in each method, it was important to better understand the behavior of the reagents considered specific to each form of the metal in soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbon dioxide reforming of methane was carried out over nickel catalysts supported on the gamma-Al2O3/CeO2 system prepared by wet impregnation. With the increase of the CeO2 weight in the catalyst, a higher stability was observed in the catalytic activity, together with an excellent resistance to carbon deposition and a better Ni dispersion. The catalysts were characterized by means of surface area measurements, TPR, H2 chemisorption, XRD, SEM, EDX, XPS and TEM. An interaction between Ni and CeO2 was observed to the Ni/CeO2 sample after activation in a H2 atmosphere above 300 ºC. Such behavior has a significantly influence on the catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today satellites propulsion is based on the use of monopropellant and/or bipropellant chemical systems. The maneuvering of satellite is based on the hydrazine decomposition micropropulsors catalyzed by metallic iridium supported on g-alumina. This reaction is a surface reaction and is strongly exothermic and implies that the operation of the micropropulsor is controlled by the mass and heat diffusions. For this reason and for the fact that the propulsor operation is frequently in pulsed regime, the catalyst should support high pressure and temperature variations within a short time period. The performance and the durability of the commercial catalyst are jeopardized by the low thermal conductivity of the alumina. The low thermal conductivity of the alumina support restricts the heat diffusion and leads to the formation of hot spots on the catalyst surface causing the metal sintering and/or fractures of the support, resulting in loss of the activity and catalyst destruction. This work presents the synthesis and characterization of new carbon composite support for the active element iridium, in substitution of the commercial catalysts alumina based support. These supports are constituted of carbon nanofibers (30 to 40 nm diameter) supported on a macroscopic carbon felt. These materials present high thermal conductivity and mechanical resistance, as well as the easiness to be shaped with different macroscopic shapes. The mechanical stability and the performance of the iridium supported on the carbon composite support, evaluated in a laboratory scale test in hydrazine decomposition reaction, are superior compared to the commercial catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-pentamethoxyflavone (1), 3',4',5,7-tetramethoxyflavone (2) and 5-hydroxy-3',4',5',7-tetramethoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete ¹H and 13C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are attracting much interest as efficient and clean energy conversion devices. The main components of low temperature fuel cells are the electrocatalysts used to promote the anodic and cathodic reactions, which are based on platinum and platinum alloys. These electrocatalysts are normally prepared in the form of metal nanoparticles supported on a conductive material, usually high surface area carbon, to improve catalyst utilization and reduce cost. This work presents and comments some methods used presently to produce these electrocatalysts. The performances of the produced electrocatalysts are compared to that of state-of-the-art commercial E-TEK electrocatalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to optimize the preparation of electrodes with riboflavin (RF) immobilized on a silica surface modified with niobium oxide and carbon paste. Electrode preparation was optimized employing a factorial design consisting of two levels and three factors. The electrochemical properties of immobilized RF were investigated by cyclic voltammetry. The factorial analysis was carried out analysing the current intensity (Ipa). It was possible to optimize the electrode to get the best reversibility in the redox process, i. e. the lowest separation between anodic and cathodic peak potentials and a current ratio close to unity. The concentration of supporting electrolyte has a small effect. The proportion has the highest effect and the interaction factor between proportion and mixture has also a significant effect on the current intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1992, the carbon paste electrodes modified with humic acids have been used for studying the behavior of metals in aqueous solutions. Many parameters influence the performance of the electrodes, such as the humic acid ratio, the nature of the humic acid, the accumulation time, the pH, the scan rate, and the preparation of the electrodes itself. There are various methos of preparing the electrodes. The goal of this paper is to review some of them. The advantages of using electrodes modified with humic acids as electrochemical sensors for evaluating metals in aqueous solution are stressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview of the properties of carbon nanotubes is presented as a function of the structural characteristics and of the method of synthesis of these novel advanced materials. Emphasis is given to the catalytic decomposition of hydrocarbons over metal-supported catalysts and also the role of the support in obtaining homogeneous carbon nanotubes in high yelds is discussed. Some potential and real applications of carbon nanotubes are presented in a perspective view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to present the catalytic performance of iridium supported on carbon nanofibers with macroscopic shaping in a 2 N hydrazine microthruster placed inside a vacuum chamber in order to reproduce real-life conditions. The performances obtained are compared to those of the commercial catalyst Shell 405. The carbon-nanofiber based catalyst showed better performance than the commercial catalyst from the standpoint of activity due to its texture and its thermal conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Hence soils are a major reservoir of carbon in terrestrial ecosystems and an important sink. Recently, emphasis has been placed on the need to sequester carbon from atmospheric carbon dioxide into soil organic matter because of international concerns about greenhouse gas emissions and global climate change. The best strategies to built-up carbon stocks in the soil are basically those that increase the input of organic matter to the soil, and/or decrease the rate of soil organic matter decomposition. Grain crop systems based on soil ploughing and harrowing lead to CO2 emissions combined with tremendous soil losses. In Brazil, no-tillage system was introduced to combat soil erosion by water and this soil management led to the build-up of soil carbon stocks with simultaneous high crop yields. However, the present procedure used to quantify carbon stocks in soils is laborious and of high cost. The use of infrared spectroscopy is very promising as an alternative low-cost method of soil carbon determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows the applicability of the carbon paste electrode-mineral (CPE-mineral) to study the dissolution mechanisms of minerals in powder form and in flotation concentrates. A potentiodynamic strategy to find the dissolution mechanism of galena (PbS) is presented. In this way, minerals less studied such as orpiment (As2S3) and realgar (As2S2) are investigated. The electrochemical activity of a more complicated mineral such as sphalerite (ZnS), containing 12.3 and 0.43% of iron in solid solution, is discussed. The mechanism of a complex zinc concentrate (containing 63.4% ZnS, 20.1% FeS2, 5% CuFeS2, 0.33% PbS, 0.45% Cu12Sb4S13 and 0.4% FeAsS) is described. Finally, an electrochemical method for the detection of the different leachable and refractory silver phases (contained in two mineral concentrates) is presented. This paper reviews the power of the use of CPE-mineral coupled to electrochemical techniques in hydrometallurgy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The driving force of boron adsorption on some tropical soils was evaluated by means of thermodynamic parameters. The batch method was employed, and the reaction was monitored at different pH values. The Langmuir equation successfully fitted the experimental results and provided reasonable isotherm parameters. Boron adsorption increased as a function of the pH of the soil solution and the concentration of added boron. The reaction was favorable and proceeded spontaneously, being strongly exoergic, as indicated by a negative free energy (deltaG) and a separation factor (K R) < 1. The boron adsorption phenomenon and the soil-solution interface were thermodinamically described using a theoretical model.