81 resultados para tissue nonspecific alkaline phosphatase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precise nature of hormones and growth factors directly responsible for cartilage maturation is still largely unclear. Since longitudinal bone growth occurs through endochondral bone formation, excess or deficiency of most hormones and growth factors strongly influences final adult height. The structure and composition of the cartilaginous extracellular matrix have a critical role in regulating the behavior of growth plate chondrocytes. Therefore, the maintenance of the three-dimensional cell-matrix interaction is necessary to study the influence of individual signaling molecules on chondrogenesis, cartilage maturation and calcification. To investigate the effects of insulin on both proliferation and induction of hypertrophy in chondrocytes in vitro we used high-density micromass cultures of chick embryonic limb mesenchymal cells. Culture medium was supplemented with 1% FCS + 60 ng/ml (0.01 µM) insulin and cultures were harvested at regular time points for later analysis. Proliferating cell nuclear antigen immunoreactivity was widely detected in insulin-treated cultures and persisted until day 21 and [³H]-thymidine uptake was highest on day 14. While apoptosis increased in control cultures as a function of culture time, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-labeled cells were markedly reduced in the presence of insulin. Type II collagen production, alkaline phosphatase activity and cell size were also lower in insulin-treated cultures. Our results indicate that under the influence of 60 ng/ml insulin, chick chondrocytes maintain their proliferative potential but do not become hypertrophic, suggesting that insulin can affect the regulation of chondrocyte maturation and hypertrophy, possibly through an antiapoptotic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predominant type of liver alteration in asymptomatic or oligosymptomatic chronic male alcoholics (N = 169) admitted to a psychiatric hospital for detoxification was classified by two independent methods: liver palpation and multiple quadratic discriminant analysis (QDA), the latter applied to two parameters reported by the patient (duration of alcoholism and daily amount ingested) and to the data obtained from eight biochemical blood determinations (total bilirubin, alkaline phosphatase, glycemia, potassium, aspartate aminotransferase, albumin, globulin, and sodium). All 11 soft and sensitive, and 13 firm and sensitive livers formed fully concordant groups as determined by QDA. Among the 22 soft and not sensitive livers, 95% were concordant by QDA grouping. Concordance rates were low (55%) in the 73 firm and not sensitive livers, and intermediate (76%) in the 50 not palpable livers. Prediction of the liver palpation characteristics by QDA was 95% correct for the firm and not sensitive livers and moderate for the other groups. On a preliminary basis, the variables considered to be most informative by QDA were the two anamnestic data and bilirubin levels, followed by alkaline phosphatase, glycemia and potassium, and then by aspartate aminotransferase and albumin. We conclude that, when biopsies would be too costly or potentially injurious to the patients to varying extents, clinical data could be considered valid to guide patient care, at least in the three groups (soft, not sensitive; soft, sensitive; firm, sensitive livers) in which the two noninvasive procedures were highly concordant in the present study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The establishment of dorsal-ventral polarity in Drosophila is a complex process which involves the action of maternal and zygotically expressed genes. Interspecific differences in the expression pattern of some of these genes have been described in other species. Here we present the expression of dorsal-ventral genes during early embryogenesis in the lower dipteran Rhynchosciara americana. The expression of four genes, the ventralizing genes snail (sna) and twist (twi) and the dorsalizing genes decapentaplegic (dpp) and zerknüllt (zen), was investigated by whole-mount in situ hybridization. Sense and antisense mRNA were transcribed in vitro using UTP-digoxigenin and hybridized at 55°C with dechorionated fixed embryos. Staining was obtained with anti-digoxigenin alkaline phosphatase-conjugated antibody revealed with NBT-BCIP solution. The results showed that, in general, the spatial-temporal expression of R. americana dorsal-ventral genes is similar to that observed in Drosophila, where twi and sna are restricted to the ventral region, while dpp and zen are expressed in the dorsal side. The differences encountered were subtle and probably represent a particular aspect of dorsal-ventral axis determination in R. americana. In this lower dipteran sna is expressed slightly later than twi and dpp expression is expanded over the lateral ectoderm during cellular blastoderm stage. These data suggest that the establishment of dorsal-ventral polarity in R. americana embryos follows a program similar to that observed in Drosophila melanogaster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quadriplegic subjects present extensive muscle mass paralysis which is responsible for the dramatic decrease in bone mass, increasing the risk of bone fractures. There has been much effort to find an efficient treatment to prevent or reverse this significant bone loss. We used 21 male subjects, mean age 31.95 ± 8.01 years, with chronic quadriplegia, between C4 and C8, to evaluate the effect of treadmill gait training using neuromuscular electrical stimulation, with 30-50% weight relief, on bone mass, comparing individual dual-energy X-ray absorptiometry responses and biochemical markers of bone metabolism. Subjects were divided into gait (N = 11) and control (N = 10) groups. The gait group underwent gait training for 6 months, twice a week, for 20 min, while the control group did not perform gait. Bone mineral density (BMD) of lumbar spine, femoral neck, trochanteric area, and total femur, and biochemical markers (osteocalcin, bone alkaline phosphatase, pyridinoline, and deoxypyridinoline) were measured at the beginning of the study and 6 months later. In the gait group, 81.8% of the subjects presented a significant increase in bone formation and 66.7% also presented a significant decrease of bone resorption markers, whereas 30% of the controls did not present any change in markers and 20% presented an increase in bone formation. Marker results did not always agree with BMD data. Indeed, many individuals with increased bone formation presented a decrease in BMD. Most individuals in the gait group presented an increase in bone formation markers and a decrease in bone resorption markers, suggesting that gait training, even with 30-50% body weight support, was efficient in improving the bone mass of chronic quadriplegics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the effect of chronic hyperglycemia on bone mineral density (BMD) and bone remodeling in patients with type 2 diabetes mellitus. We investigated 42 patients with type 2 diabetes under stable control for at least 1 year, 22 of them with good metabolic control (GMC: mean age = 48.8 ± 1.5 years, 11 females) and 20 with poor metabolic control (PMC: mean age = 50.2 ± 1.2 years, 8 females), and 24 normal control individuals (CG: mean age = 46.5 ± 1.1 years, 14 females). We determined BMD in the femoral neck and at the L2-L4 level (DEXA) and serum levels of glucose, total glycated hemoglobin (HbA1), total and ionic calcium, phosphorus, alkaline phosphatase, follicle-stimulating hormone, intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25-OH-D), insulin-like growth factor I (IGFI), osteocalcin, procollagen type I C propeptide, as well as urinary levels of deoxypyridinoline and creatinine. HbA1 levels were significantly higher in PMC patients (12.5 ± 0.6 vs 7.45 ± 0.2% for GMC and 6.3 ± 0.9% for CG; P < 0.05). There was no difference in 25-OH-D, iPTH or IGFI levels between the three groups. BMD values at L2-L4 (CG = 1.068 ± 0.02 vs GMC = 1.170 ± 0.03 vs PMC = 1.084 ± 0.02 g/cm²) and in the femoral neck (CG = 0.898 ± 0.03 vs GMC = 0.929 ± 0.03 vs PMC = 0.914 ± 0.03 g/cm²) were similar for all groups. PMC presented significantly lower osteocalcin levels than the other two groups, whereas no significant difference in urinary deoxypyridine was observed between groups. The present results demonstrate that hyperglycemia is not associated with increased bone resorption in type 2 diabetes mellitus and that BMD is not altered in type 2 diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Costimulatory and antigen-presenting molecules are essential to the initiation of T cell immunity to mycobacteria. The present study analyzed by immunocytochemistry, using monoclonal antibodies and alkaline phosphatase-anti-alkaline phosphatase method, the frequency of costimulatory (CD86, CD40, CD40L, CD28, and CD152) and antigen-presenting (MHC class II and CD1) molecules expression on human lung cells recovered by sputum induction from tuberculosis (TB) patients (N = 22) and non-TB controls (N = 17). TB cases showed a statistically significant lower percentage of HLA-DR+ cells than control subjects (21.9 ± 4.2 vs 50.0 ± 7.2%, P < 0.001), even though similar proportions of TB cases (18/22) and control subjects (16/17, P = 0.36) had HLA-DR-positive-stained cells. In addition, fewer TB cases (10/22) compared to control subjects (16/17) possessed CD86-expressing cells (P = 0.04; OR: 0.05; 95%CI = 0.00-0.51), and TB cases expressed a lower percentage of CD86+ cells (P = 0.04). Moreover, TB patients with clinically limited disease (£1 lobe) on chest X-ray exhibited a lower percentage of CD86-bearing cells compared to patients with more extensive lung disease (>1 lobe) (P = 0.02). The lower expression by lung cells from TB patients of HLA-DR and CD86, molecules involved in antigen presentation and activation of T cells, may minimize T cell recognition of Mycobacterium tuberculosis, fostering an immune dysfunctional state and active TB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The range of 25-hydroxyvitamin D (25OHD) concentration was determined in a young healthy population based on bone metabolism parameters and environmental and behavioral aspects. We studied 121 healthy young volunteers (49 men, 72 women) living in São Paulo (23º 34' south latitude) belonging to three occupational categories: indoor workers (N = 28), medical school students (N = 44), and resident physicians (N = 49). Fasting morning blood samples were collected once from each volunteer from August 2002 to February 2004, and 25OHD, total calcium, albumin, alkaline phosphatase, phosphorus, creatinine, intact parathyroid hormone, osteocalcin, and type I collagen carboxyterminal telopeptide were measured. Data are reported as means ± SD. Mean subject age was 24.7 ± 2.68 years and mean 25OHD level for the entire group was 78.7 ± 33.1 nM. 25OHD levels were lower (P < 0.05) among resident physicians (67.1 ± 27.0 nM) than among students (81.5 ± 35.8 nM) and workers (94.0 ± 32.6 nM), with the last two categories displaying no difference. Parathyroid hormone was higher (P < 0.05) and osteocalcin was lower (P < 0.05) among resident physicians compared to non-physicians. Solar exposure and frequency of beach outings showed a positive association with 25OHD (P < 0.001), and summer samples presented higher results than winter ones (97.8 ± 33.5 and 62.9 ± 23.5 nM, respectively). To define normal levels, parameters such as occupational activity, seasonality and habits related to solar exposure should be taken into account. Based on these data, we considered concentrations above 74.5 nM to be desired optimal 25OHD levels, which were obtained during the summer for 75% of the non-physicians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues adjacent to large joints, resulting in joint mobility deficit. In order to determine which treatment techniques are more appropriate for such condition, experimental models of induced heterotopic bone formation have been proposed using heterologous demineralized bone matrix implants and bone morphogenetic protein and other tissues. The objective of the present experimental study was to identify a reliable protocol to induce HO in Wistar rats, based on autologous bone marrow (BM) implantation, comparing 3 different BM volumes and based on literature evidence of this HO induction model in larger laboratory animals. Twelve male Wistar albino rats weighing 350/390 g were used. The animals were anesthetized for blood sampling before HO induction in order to quantify serum alkaline phosphatase (ALP). HO was induced by BM implantation in both quadriceps muscles of these animals, experimental group (EG). Thirty-five days after the induction, another blood sample was collected for ALP determination. The results showed a weight gain in the EG and no significant difference in ALP levels when comparing the periods before and after induction. Qualitative histological analysis confirmed the occurrence of heterotopic ossification in all 12 EG rats. In conclusion, the HO induction model was effective when 0.35 mL autologous BM was applied to the quadriceps of Wistar rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective was to evaluate the concentrations of serum 25-hydroxyvitamin D [25(OH)D], serum calcium, serum phosphorus, alkaline phosphatase, and parathormone (PTH) in patients with polyarticular juvenile idiopathic arthritis (JIA) and to associate them with disease duration and activity, bone mineral density and use of medications. In a cross-sectional and controlled study, 30 patients with polyarticular JIA were evaluated and compared to 30 healthy individuals matched for age and gender. Clinical status, anthropometry, laboratory markers in both patients and controls, and bone mineral density, only in the patients, were measured. Of the 30 patients included in the study, 23 (76.7%) were female and 16 (53.3%) non-Caucasian; mean age was 14 years (range = 4 to 20 years). Mean disease duration was 5 years (range = 1 to 12 years). The mean concentrations of serum albumin-corrected calcium (9.04 ± 0.41 mg/dL) and alkaline phosphatase (153.3 ± 100.1 IU) were significantly lower in patients with JIA than in controls (P < 0.0001 and P = 0.001, respectively). No differences in 25(OH)D, PTH or serum phosphorus were observed between JIA and control subjects. Regarding 25(OH)D concentration, 8 patients (26.7%) and 5 controls (16.7%) had 25(OH)D concentrations compatible with deficiency (lower than 20 ng/mL) and 14 patients (46.7%) and 18 controls (60%) had concentrations compatible with insufficiency (20-32 ng/mL). These values were not associated with disease activity, use of medications or bone mineral density. We observed a high frequency of 25(OH)D insufficiency and deficiency in the study sample. The compromised bone metabolism emphasizes the importance of follow-up of JIA patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) have been shown to exhibit a synergistic effect to promote bone repair and healing. In this study, we constructed a novel adenovirus with high coexpression of BMP2 and bFGF and evaluated its effect on osteogenic differentiation of goat bone marrow progenitor cells (BMPCs). Recombinant adenovirus Ad-BMP2-bFGF was constructed by using the T2A sequence. BMPCs were isolated from goats by density gradient centrifugation and adherent cell culture, and were then infected with Ad-BMP2-bFGF or Ad-BMP2. Expression of BMP2 and bFGF was detected by ELISA, and alkaline phosphatase (ALP) activity was detected by an ALP assay kit. In addition, von Kossa staining and immunocytochemical staining of collagen II were performed on BMPCs 21 days after infection. There was a high coexpression of BMP2 and bFGF in BMPCs infected with Ad-BMP2-bFGF. Twenty-one days after infection, ALP activity was significantly higher in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. Larger and more mineralized calcium nodules, as well as stronger collagen II staining, were observed in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. In summary, we developed a novel adenovirus vector Ad-BMP2-bFGF for simultaneous high coexpression of BMP2 and bFGF, which could induce BMPCs to differentiate efficiently into osteoblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of supplementary vitamin D therapy in addition to amitriptyline on the frequency of migraine attacks in pediatric migraine patients. Fifty-three children 8-16 years of age and diagnosed with migraine following the International Headache Society 2005 definition, which includes childhood criteria, were enrolled. Patients were classified into four groups on the basis of their 25-hydroxyvitamin D [25(OH)D] levels. Group 1 had normal 25(OH)D levels and received amitriptyline therapy alone; group 2 had normal 25(OH)D levels and received vitamin D supplementation (400 IU/day) plus amitriptyline; group 3 had mildly deficient 25(OH)D levels and received amitriptyline plus vitamin D (800 IU/day); and group 4 had severely deficient 25(OH)D levels and was given amitriptyline plus vitamin D (5000 IU/day). All groups were monitored for 6 months, and the number of migraine attacks before and during treatment was determined. Calcium, phosphorus alkaline phosphatase, parathormone, and 25(OH)D levels were also determined before and during treatment. Results were compared between the groups. Data obtained from the groups were analyzed using one-way analysis of variance. The number of pretreatment attacks in groups 1 to 4 was 7±0.12, 6.8±0.2, 7.3±0.4, and 7.2±0.3 for 6 months, respectively (all P>0.05). The number of attacks during treatment was 3±0.25, 1.76±0.37 (P<0.05), 2.14±0.29 (P<0.05), and 1.15±0.15 (P<0.05), respectively. No statistically significant differences in calcium, phosphorus, alkaline phosphatase, or parathormone levels were observed (P>0.05). Vitamin D given in addition to anti-migraine treatment reduced the number of migraine attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the concentrations of 25-hydroxyvitamin D [25(OH)D] in children and adolescents with juvenile systemic lupus erythematosus (JSLE) and associated them with disease duration and activity, use of medication (chloroquine and glucocorticoids), vitamin D intake, calcium and alkaline phosphatase levels, and bone mineral density. Thirty patients with JSLE were evaluated and compared to 30 healthy individuals, who were age and gender matched. Assessment was performed of clinical status, disease activity, anthropometry, laboratory markers, and bone mineral density. The 30 patients included 25 (83.3%) females and 16 (53.3%) Caucasians, with a mean age of 13.7 years. The mean age at diagnosis was 10.5 years and mean disease duration was 3.4 years. Mean levels of calcium, albumin, and alkaline phosphatase were significantly lower in patients with JSLE compared with controls (P<0.001, P=0.006, and P<0.001, respectively). Twenty-nine patients (97%) and 23 controls (77%) had 25(OH)D concentrations lower than 32 ng/mL, with significant differences between them (P<0.001). Fifteen patients (50%) had vitamin D levels <20 ng/mL and 14 had vitamin D levels between 20 and 32 ng/mL. However, these values were not associated with greater disease activity, higher levels of parathormone, medication intake, or bone mineral density. Vitamin D concentrations were similar with regard to ethnic group, body mass index, height for age, and pubertal stage. Significantly more frequently than in controls, we observed insufficient serum concentrations of 25(OH)D in patients with JSLE; however, we did not observe any association with disease activity, higher levels of parathormone, lower levels of alkaline phosphatase, use of medications, or bone mineral density alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.