144 resultados para soil water levels


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil penetration resistance (PR) and the tensile strength of aggregates (TS) are commonly used to characterize the physical and structural conditions of agricultural soils. This study aimed to assess the functionality of a dynamometry apparatus by linear speed and position control automation of its mobile base to measure PR and TS. The proposed equipment was used for PR measurement in undisturbed samples of a clayey "Nitossolo Vermelho eutroférrico" (Kandiudalfic Eutrudox) under rubber trees sampled in two positions (within and between rows). These samples were also used to measure the volumetric soil water content and bulk density, and determine the soil resistance to penetration curve (SRPC). The TS was measured in a sandy loam "Latossolo Vermelho distrófico" (LVd) - Typic Haplustox - and in a very clayey "Nitossolo Vermelho distroférrico" (NVdf) - Typic Paleudalf - under different uses: LVd under "annual crops" and "native forest", NVdf under "annual crops" and "eucalyptus plantation" (> 30 years old). To measure TS, different strain rates were applied using two dynamometry testing devices: a reference machine (0.03 mm s-1), which has been widely used in other studies, and the proposed equipment (1.55 mm s-1). The determination coefficient values of the SRPC were high (R² > 0.9), regardless of the sampling position. Mean TS values in LVd and NVdf obtained with the proposed equipment did not differ (p > 0.05) from those of the reference testing apparatus, regardless of land use and soil type. Results indicate that PR and TS can be measured faster and accurately by the proposed procedure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leptosols and Regosols are soils with a series of restrictions for use, mainly related to the effective depth, which have been poorly studied in Brazil. These soils, when derived from sedimentary rocks should be treated with particular care to avoid environmental damage such as aquifer contamination. The purpose of this study was to verify the behavior of hydraulic conductivity and water retention capacity in profiles of Leptosols and Regosols derived from sandstone of the Caturrita formation in Rio Grande do Sul state. The morphology, particle size distribution, porosity, soil density (Ds), saturated hydraulic conductivity (Ks), basic water infiltration in the field (BI) and water retention were determined in soil and saprolite samples of six soil profiles. High Ds, low macroporosity and high microporosity were observed in the profiles, resulting in a low Ks and BI, even under conditions of sandy texture and a highly fractured saprolite layer. The variation coefficients of data of Ks and BI were high among the studied profiles and between replications of a same profile. Water retention of the studied soils was higher in Cr layers than in the A horizons and the volume of plant-available water greater and variable among A horizons and Cr layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wastewater application to soil is an alternative for fertilization and water reuse. However, particular care must be taken with this practice, since successive wastewater applications can cause soil salinization. Time-domain reflectometry (TDR) allows for the simultaneous and continuous monitoring of both soil water content and apparent electrical conductivity and thus for the indirect measurement of the electrical conductivity of the soil solution. This study aimed to evaluate the suitability of TDR for the indirect determination of the electrical conductivity (ECse) of the saturated soil extract by using an empirical equation for the apparatus TDR Trase 6050X1. Disturbed soil samples saturated with swine wastewater were used, at soil proportions of 0, 0.45, 0.90, 1.80, 2.70, and 3.60 m³ m-3. The probes were equipped with three handmade 0.20 cm long rods. The fit of the empirical model that associated the TDR measured values of electrical conductivity (EC TDR) to ECse was excellent, indicating this approach as suitable for the determination of electrical conductivity of the soil solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pedotransfer functions (PTF) were developed to estimate the parameters (α, n, θr and θs) of the van Genuchten model (1980) to describe soil water retention curves. The data came from various sources, mainly from studies conducted by universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation (Embrapa) and by a corporation for the development of the São Francisco and Parnaíba river basins (Codevasf), totaling 786 retention curves, which were divided into two data sets: 85 % for the development of PTFs, and 15 % for testing and validation, considered independent data. Aside from the development of general PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols, Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise procedure (forward and backward) to select the best predictors. Two types of PTFs were developed: the first included all predictors (soil density, proportions of sand, silt, clay, and organic matter), and the second only the proportions of sand, silt and clay. The evaluation of adequacy of the PTFs was based on the correlation coefficient (R) and Willmott index (d). To evaluate the PTF for the moisture content at specific pressure heads, we used the root mean square error (RMSE). The PTF-predicted retention curve is relatively poor, except for the residual water content. The inclusion of organic matter as a PTF predictor improved the prediction of parameter a of van Genuchten. The performance of soil-class-specific PTFs was not better than of the general PTF. Except for the water content of saturated soil estimated by particle size distribution, the tested models for water content prediction at specific pressure heads proved satisfactory. Predictions of water content at pressure heads more negative than -0.6 m, using a PTF considering particle size distribution, are only slightly lower than those obtained by PTFs including bulk density and organic matter content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies of soil-water dynamics using toposequences are essential to improve the understanding of soil-water-vegetation relationships. This study assessed the hydro-physical and morphological characteristics of soils of Atlantic Rainforest in the Parque Estadual de Carlos Botelho, state of São Paulo, Brazil. The study area of 10.24 ha (320 x 320 m) was covered by dense tropical rainforest (Atlantic Rainforest). Based on soil maps and topographic maps of the area, a representative transect of the soil in this plot was chosen and five soil trenches were opened to determine morphological properties. To evaluate the soil hydro-physical functioning, soil particle size distribution, bulk density (r), particle density (r s), soil water retention curves (SWRC), field saturated hydraulic conductivity (Ks), macroporosity (macro), and microporosity (micro) and total porosity (TP) were determined. Undisturbed samples were collected for micromorphometric image analysis, to determine pore size, shape, and connectivity. The soils in the study area were predominantly Inceptisols, and secondly Entisols and Epiaquic Haplustult. In the soil hydro-physical characterization of the selected transect, a change was observed in Ks between the surface and subsurface layers, from high/intermediate to intermediate/low permeability. This variation in soil-water dynamics was also observed in the SWRC, with higher water retention in the subsurface horizons. The soil hydro-physical behavior was influenced by the morphogenetic characteristics of the soils.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil penetration resistance is an important indicator of soil physical quality and the critical limit of 2 MPa has been widely used to characterize the soil physical quality, in both no-tillage and conventional systems. The aim of this study was to quantify the influence of different tillage and cropping systems on the soil penetration resistance in a Rhodic Eutrudox. The experiment was carried out in a 5 × 2 factorial, completely randomized block design (tillage systems vs cropping systems), with four replications. The tillage systems consisted of: conventional tillage disk harrow; minimum tillage with annual chiseling; minimum tillage with chiseling every three years; no-tillage for 11 consecutive years; and no-tillage for 24 consecutive years. The factor cropping systems was represented by: crop rotation and crop succession. The soil penetration resistance (SPR) was determined in 20 soil samples per treatment and layer (0.0-0.10; 0.10-0.20 and 0.20-0.30 m) for each soil matric potential: -6, -10, -33, -100, -500 kPa. The SPR was determined at a volumetric soil water content equivalent to the fraction of plant-available water of 0.7. There were no differences of soil penetration resistance between the two cropping systems. Differences in soil penetration resistance among tillage systems were related to the matric potential at which the samples were equilibrated. The critical SPR limit of 2 MPa normally used for conventional tillage should be maintained. However, this value of 2 MPa is inappropriate for the physical quality characterization of Rhodic Eutrudox under no-tillage and/or minimum tillage with chiseling. Regardless of the cropping systems, the critical SPR limit should be raised to 3 MPa for minimum tillage with chiseling and to 3.5 MPa for no-tillage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Selection of common bean (Phaseolus vulgaris L.) cultivars with enhanced root growth would be a strategy for increasing P uptake and grain yield in tropical soils, but the strong plasticity of root traits may compromise their inclusion in breeding programs. The aim of this study was to evaluate the magnitude of the genotypic variability of root traits in common bean plants at two ontogenetic stages and two soil P levels. Twenty-four common bean genotypes, comprising the four growth habits that exist in the species and two wild genotypes, were grown in 4 kg pots at two levels of applied P (20 and 80 mg kg-1) and harvested at the stages of pod setting and early pod filling. Root area and root length were measured by digital image analysis. Significant genotype × P level and genotype × harvest interactions in analysis of variance indicate that the genotypic variation of root traits depended on soil nutrient availability and the stage at which evaluation was made. Genotypes differed for taproot mass, basal and lateral root mass, root area and root length at both P levels and growth stages; differences in specific root area and length were small. Genotypes with growth habits II (upright indeterminate) and III (prostrate indeterminate) showed better adaptation to limited P supply than genotypes of groups I (determinate) and IV (indeterminate climbing). Between the two harvests, genotypes of groups II and III increased the mass of basal and lateral roots by 40 and 50 %, respectively, whereas genotypes of groups I and IV by only 7 and 19 %. Values of the genotypic coefficient of determination, which estimates the proportion of phenotypic variance resulting from genetic effects, were higher at early pod filling than at pod setting. Correlations between shoot mass and root mass, which could indicate indirect selection of root systems via aboveground biomass, were higher at early pod filling than at pod setting. The results indicate that selection for root traits in common bean genotypes should preferentially be performed at the early pod-filling stage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The least limiting water range (LLWR) has been used as an indicator of soil physical quality as it represents, in a single parameter, the soil physical properties directly linked to plant growth, with the exception of temperature. The usual procedure for obtaining the LLWR involves determination of the water retention curve (WRC) and the soil resistance to penetration curve (SRC) in soil samples with undisturbed structure in the laboratory. Determination of the WRC and SRC using field measurements (in situ ) is preferable, but requires appropriate instrumentation. The objective of this study was to determine the LLWR from the data collected for determination of WRC and SRC in situ using portable electronic instruments, and to compare those determinations with the ones made in the laboratory. Samples were taken from the 0.0-0.1 m layer of a Latossolo Vermelho distrófico (Oxisol). Two methods were used for quantification of the LLWR: the traditional, with measurements made in soil samples with undisturbed structure; and in situ , with measurements of water content (θ), soil water potential (Ψ), and soil resistance to penetration (SR) through the use of sensors. The in situ measurements of θ, Ψ and SR were taken over a period of four days of soil drying. At the same time, samples with undisturbed structure were collected for determination of bulk density (BD). Due to the limitations of measurement of Ψ by tensiometer, additional determinations of θ were made with a psychrometer (in the laboratory) at the Ψ of -1500 kPa. The results show that it is possible to determine the LLWR by the θ, Ψ and SR measurements using the suggested approach and instrumentation. The quality of fit of the SRC was similar in both strategies. In contrast, the θ and Ψ in situ measurements, associated with those measured with a psychrometer, produced a better WRC description. The estimates of the LLWR were similar in both methodological strategies. The quantification of LLWR in situ can be achieved in 10 % of the time required for the traditional method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina') under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT), between the wheel tracks (BWT), and in the area under the line projection of the canopy (CLP), with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf) in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT), which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT) and conventional tillage (CT) systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Infiltration is the passage of water through the soil surface, influenced by the soil type and cultivation and by the soil roughness, surface cover and water content. Infiltration absorbs most of the rainwater and is therefore crucial for planning mechanical conservation practices to manage runoff. This study determined water infiltration in two soil types under different types of management and cultivation, with simulated rainfall of varying intensity and duration applied at different times, and to adjust the empirical model of Horton to the infiltration data. The study was conducted in southern Brazil, on Dystric Nitisol (Nitossolo Bruno aluminoférrico húmico) and Humic Cambisol (Cambissolo Húmico alumínico léptico) soils to assess the following situations: simulated rains on the Nitisol from 2001 to 2012 in 31 treatments, differing in crop type, sowing direction, type of soil opener on the seeder, amount and type of crop residue and amount of liquid swine manure applied; on the Cambisol, rains were simlated from 2006 to 2012 and 18 treatments were evaluated, differing in crop, seeding direction and crop residue type. The constant of the water infiltration rate into the soil varies significantly with the soil type (30.2 mm h-1 in the Nitisol and 6.6 mm h-1 in the Cambisol), regardless of the management system, application time and rain intensity and duration. At the end of rainfalls, soil-water infiltration varies significantly with the management system, with the timing of application and rain intensity and duration, with values ranging from 13 to 59 mm h-1, in the two studied soils. The characteristics of the sowing operation in terms of relief, crop type and amount and type of crop residue influenced soil water infiltration: in the Nitisol, the values of contour and downhill seeding vary between 27 and 43 mm h-1, respectively, with crop residues of corn, wheat and soybean while in the Cambisol, the variation is between 2 and 36 mm h-1, respectively, in soybean and corn crops. The Horton model fits the values of water infiltration rate into the soil, resulting in the equation i = 30.2 + (68.2 - 30.2) e-0.0371t (R2 = 0.94**) for the Nitisol and i = 6.6 + (64.5 - 6.6) e-0.0537t (R2 = 0.99**) for the Cambisol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quantification of soil physical quality (SPQ) and pore size distribution (PSD) can assist understanding of how changes in land management practices influence dynamics of soil structure, and this understanding could greatly improve the predictability of soil physical behavior and crop yield. The objectives of this study were to measure the SPQ index under two different land management practices (the continuous arable cropping system and natural bush fallow system), and contrast the effects of these practices on the structure of PSD using soil water retention data. Soil water retention curves obtained from a pressure chamber were fitted to van Genuchten’s equation, setting m (= 1-1/n). Although values for soil bulk density were high, soils under the continuous arable cropping system had good SPQ, and maintained the capacity to support root development. However, soils under the natural bush fallow system had a worse structure than the continuous arable system, with restrictions in available water capacity. These two management systems had different PSDs. Results showed the inferiority of the natural bush fallow system with no traffic restriction (which is the common practice) in relation to the continuous arable cropping system in regard to physical quality and structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Estimation of soil load-bearing capacity from mathematical models that relate preconsolidation pressure (σp) to mechanical resistance to penetration (PR) and gravimetric soil water content (U) is important for defining strategies to prevent compaction of agricultural soils. Our objective was therefore to model the σp and compression index (CI) according to the PR (with an impact penetrometer in the field and a static penetrometer inserted at a constant rate in the laboratory) and U in a Rhodic Eutrudox. The experiment consisted of six treatments: no-tillage system (NT); NT with chiseling; and NT with additional compaction by combine traffic (passing 4, 8, 10, and 20 times). Soil bulk density, total porosity, PR (in field and laboratory measurements), U, σp, and CI values were determined in the 5.5-10.5 cm and 13.5-18.5 cm layers. Preconsolidation pressure (σp) and CI were modeled according to PR in different U. The σp increased and the CI decreased linearly with increases in the PR values. The correlations between σp and PR and PR and CI are influenced by U. From these correlations, the soil load-bearing capacity and compaction susceptibility can be estimated by PR readings evaluated in different U.