90 resultados para smooth muscle alpha-actin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10) or 20 µM and Emax of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 µM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM), a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM) or ODQ (1 µM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM), a VIP receptor antagonist, significantly inhibited (37 ± 7%) relaxation induced by gentisic acid, whereas CGRP (8-37) (0.1 µM), a CGRP antagonist, only slightly enhanced the action of gentisic acid. Taken together, these results provide functional evidence for the direct activation of voltage and large-conductance Ca+2-activated K+ channels, or indirect modulation of potassium channels induced by VIP receptors and accounts for the predominant relaxation response caused by gentisic acid in the guinea pig trachea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO)-synthase is present in diaphragm, phrenic nerve and vascular smooth muscle. It has been shown that the NO precursor L-arginine (L-Arg) at the presynaptic level increases the amplitude of muscular contraction (AMC) and induces tetanic fade when the muscle is indirectly stimulated at low and high frequencies, respectively. However, the precursor in muscle reduces AMC and maximal tetanic fade when the preparations are stimulated directly. In the present study the importance of NO synthesized in different tissues for the L-Arg-induced neuromuscular effects was investigated. Hemoglobin (50 nM) did not produce any neuromuscular effect, but antagonized the increase in AMC and tetanic fade induced by L-Arg (9.4 mM) in rat phrenic nerve-diaphragm preparations. D-Arg (9.4 mM) did not produce any effect when preparations were stimulated indirectly at low or high frequency. Hemoglobin did not inhibit the decrease of AMC or the reduction in maximal tetanic tension induced by L-Arg in preparations previously paralyzed with d-tubocurarine and directly stimulated. Since only the presynaptic effects induced by L-Arg were antagonized by hemoglobin, the present results suggest that NO synthesized in muscle acts on nerve and skeletal muscle. Nevertheless, NO produced in nerve and vascular smooth muscle does not seem to act on skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was designed to evaluate the differences in the coronary vasodilator actions of serotonin (5-HT) in isolated heart obtained from naive or castrated male and female rats that were treated with either estrogen or testosterone. Hearts from 12 groups of rats were used: male and female naive animals, castrated, castrated and treated with 17ß-estradiol (0.5 µg kg-1 day-1) for 7 or 30 days, and castrated and treated with testosterone (0.5 mg kg-1 day-1) for 7 or 30 days. After treatment, the vascular reactivity of the coronary bed was evaluated. Baseline coronary perfusion pressure (CPP) was determined and dose-response curves to 5-HT were generated. Baseline CPP differed between male (70 ± 6 mmHg, N = 10) and female (115 ± 6 mmHg, N = 12) naive rats. Maximal 5-HT-induced coronary vasodilation was higher (P<0.05) in naive female than in naive male rats. In both sexes, 5-HT produced endothelium-dependent coronary vasodilation. After castration, there was no significant difference in baseline CPP between hearts obtained from male and female rats (75 ± 7 mmHg, N = 8, and 83 ± 5 mmHg, N = 8, respectively). Castration reduced the 5-HT-induced maximal vasodilation in female and male rats (P<0.05). Estrogen treatment of castrated female rats restored (P<0.05) the vascular reactivity. In castrated male rats, 30 days of estrogen treatment increased (P<0.05) the responsiveness to 5-HT. The endothelium-dependent coronary vasodilator actions of 5-HT are greater in female rats and are modulated by estrogen. A knowledge of the mechanism of action of estrogen on coronary arteries could aid in the development of new therapeutic strategies and potentially decrease the incidence of cardiovascular disease in both sexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana, negatively modulates vagal response, indicating a probable ability to inhibit cholinergic responses. In the present study, the pharmacological profile of trimethylsulfonium was characterized on muscarinic and nicotinic acetylcholine receptors. In rat jejunum the contractile response induced by trimethylsulfonium (pD2 = 2.46 ± 0.12 and maximal response = 2.14 ± 0.32 g) was not antagonized competitively by atropine. The maximal response (Emax) to trimethylsulfonium was diminished in the presence of increasing doses of atropine (P<0.05), suggesting that trimethylsulfonium-induced contraction was not related to muscarinic stimulation, but might be caused by acetylcholine release due to presynaptic stimulation. Trimethylsulfonium displaced [³H]-quinuclidinyl benzilate from rat cortex membranes with a low affinity (Ki = 0.5 mM). Furthermore, it caused contraction of frog rectus abdominis muscles (pD2 = 2.70 ± 0.06 and Emax = 4.16 ± 0.9 g), which was competitively antagonized by d-tubocurarine (1, 3 or 10 µM) with a pA2 of 5.79, suggesting a positive interaction with nicotinic receptors. In fact, trimethylsulfonium displaced [³H]-nicotine from rat diaphragm muscle membranes with a Ki of 27.1 µM. These results suggest that trimethylsulfonium acts as an agonist on nicotinic receptors, and thus contracts frog skeletal rectus abdominis muscle and rat jejunum smooth muscle via stimulation of postjunctional and neuronal prejunctional nicotinic cholinoreceptors, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined if the increased vascular responsiveness to endothelin-1 (ET-1) observed in male, but not in female, DOCA-salt rats is associated with differential vascular mRNA expression of ET-1 and/or ET A/ET B receptors or with functional differences in Ca2+ handling mechanisms by vascular myocytes. Uninephrectomized male and female Wistar rats received DOCA and drinking water containing NaCl/KCl. Control rats received vehicle and tap water. Blood pressure and contractile responses of endothelium-denuded aortic rings to agents which induce Ca2+ influx and/or its release from internal stores were measured using standard procedures. Expression of mRNA for ET-1 and ET A/ET B receptors was evaluated by RT-PCR after isolation of total cell RNA from both aorta and mesenteric arteries. Systolic blood pressure was higher in male than in female DOCA rats. Contractions induced by Bay K8644 (which activates Ca2+ influx through voltage-operated L-type channels), and by caffeine, serotonin or ET-1 in Ca2+-free buffer (which reflect Ca2+ release from internal stores) were significantly increased in aortas from male and female DOCA-salt compared to control aortas. DOCA-salt treatment of male, but not female, rats statistically increased vascular mRNA expression of ET-1 and ET B receptors, but decreased the expression of ET A receptors. Molecular up-regulation of vascular ET B receptors, rather than differential changes in smooth muscle Ca2+ handling mechanisms, seems to account for the increased vascular reactivity to ET-1/ET B receptor agonists and higher blood pressure levels observed in male DOCA-salt rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6). Linoleic acid is the precursor of arachidonic acid (20:4n-6). In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cardiovascular protective actions of estrogen are partially mediated by a direct effect on the vessel wall. Estrogen is active both on vascular smooth muscle and endothelial cells where functionally competent estrogen receptors have been identified. Estrogen administration promotes vasodilation in humans and in experimental animals, in part by stimulating prostacyclin and nitric oxide synthesis, as well as by decreasing the production of vasoconstrictor agents such as cyclooxygenase-derived products, reactive oxygen species, angiotensin II, and endothelin-1. In vitro, estrogen exerts a direct inhibitory effect on smooth muscle by activating potassium efflux and by inhibiting calcium influx. In addition, estrogen inhibits vascular smooth muscle cell proliferation. In vivo, 17ß-estradiol prevents neointimal thickening after balloon injury and also ameliorates the lesions occurring in atherosclerotic conditions. As is the case for other steroids, the effect of estrogen on the vessel wall has a rapid non-genomic component involving membrane phenomena, such as alteration of membrane ionic permeability and activation of membrane-bound enzymes, as well as the classical genomic effect involving estrogen receptor activation and gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to investigate the structure of the arterial walls of the offspring stemming from nitric oxide (NO)-defective hypertensive parents. The parents were treated with N G-nitro-L-arginine methyl ester (40 mg kg-1 day-1) for 5 weeks. Blood pressure was measured noninvasively in six 30-day-old rats and nine age-matched controls. The cardiovascular system was perfused with glutaraldehyde at 120 mmHg. The thoracic aorta and carotid artery were processed for electron microscopy, and geometry was determined by light microscopy. Endothelial cells, smooth muscle cells (SMC) and extracellular matrix (ECM) were determined by the point counting method in electron micrographs of the carotid artery. The blood pressure of experimental offspring was 150.0 ± 2.3 vs 104.6 ± 2.1 mmHg (P < 0.01) for the controls and their heart/body weight ratio of 3.9 ± 0.1 vs 4.4 ± 0.2 (P < 0.05) for the controls indicated cardiac hypotrophy. The wall thickness (tunica intima and media) of the thoracic aorta and carotid artery of experimental offspring was decreased to 78.9% (P < 0.01) and 83.8% (P < 0.01), respectively, compared to controls, as confirmed by a respective cross-sectional area of 85.3% (P < 0.01) and 84.1% (P < 0.01). The wall thickness/inner diameter ratio was reduced to 75% (P < 0.01) in the thoracic artery and to 81.5% (P < 0.01) in the carotid artery. No change in endothelial cell volume density or ECM was observed in the tunica intima of the carotid artery, and SMC volume density was lower in the tunica media (37.6 ± 0.9 vs 44.7 ± 1.1% for controls, P < 0.01), indicating compromised SMC development. Interference with arginine metabolism, a decrease in NO, and other factors are possible mechanisms underlying the structural alterations of the cardiovascular system of offspring from NO-defective hypertensive rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 µM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 µM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 ± 3.42 g), compared to control (8.56 ± 3.16 g) and to NAC group (9.07 ± 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 µM) was also reduced (maximal relaxation of 52.1 ± 43.2%), compared to control (100%) and NAC group (97.0 ± 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 µM; maximal relaxation of 20.0 ± 21.2%), compared to control (100%) and NAC group (70.8 ± 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 µM) and pinacidil (1 nM to 10 µM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vasorelaxing activity of rotundifolone (ROT), a major constituent (63.5%) of the essential oil of Mentha x villosa, was tested in male Wistar rats (300-350 g). In isolated rat aortic rings, increasing ROT concentrations (0.3, 1, 10, 100, 300, and 500 µg/ml) inhibited the contractile effects of 1 µM phenylephrine and of 80 or 30 mM KCl (IC50 values, reported as means ± SEM = 184 ± 6, 185 ± 3 and 188 ± 19 µg/ml, N = 6, respectively). In aortic rings pre-contracted with 1 µM phenylephrine, the smooth muscle-relaxant activity of ROT was inhibited by removal of the vascular endothelium (IC50 value = 235 ± 7 µg/ml, N = 6). Furthermore, ROT inhibited (pD2 = 6.04, N = 6) the CaCl2-induced contraction in depolarizing medium in a concentration-dependent manner. In Ca2+-free solution, ROT inhibited 1 µM phenylephrine-induced contraction in a concentration-dependent manner and did not modify the phasic contractile response evoked by caffeine (20 mM). In conclusion, in the present study we have shown that ROT produces an endothelium-independent vasorelaxing effect in the rat aorta. The results further indicated that in the rat aorta ROT is able to induce vasorelaxation, at least in part, by inhibiting both: a) voltage-dependent Ca² channels, and b) intracellular Ca2+ release selectively due to inositol 1,4,5-triphosphate activation. Additional studies are required to elucidate the mechanisms underlying ROT-induced relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex interactions between androgen and estrogen (E2) regulate prostatic development and physiology. We analyzed the early effects of a high single dose of E2 (25 mg/kg body weight) and castration (separately or combined) on the adult 90-day-old male Wistar rat ventral prostate. Androgen levels, prostate weight, and the variation in the relative and absolute volume of tissue compartments and apoptotic indices were determined for 7 days. Castration and exogenous E2 markedly reduced ventral prostate weight (about 50% of the control), with a significant reduction in the epithelial compartment and increased stroma. The final volume of the epithelium was identical at day 7 for all treatments (58.5% of the control). However, E2 had an immediate effect, causing a reduction in epithelial volume as early as day 1. An increase in smooth muscle cell volume resulted from the concentration of these cells around the regressing epithelium. The treatments resulted in differential kinetics in epithelial cell apoptosis. Castration led to a peak in apoptosis at day 3, with 5% of the epithelial cells presenting signs of apoptosis, whereas E2 caused an immediate increase (observed on day 1) and a sustained (up to day 7) effect. E2 administration to castrated rats significantly increased the level of apoptosis by day 3, reaching 9% of the epithelial cells. The divergent kinetics between treatments resulted in the same levels of epithelial regression after 7 days (~30% of control). These results show that E2 has an immediate and possibly direct effect on the prostate, and anticipates epithelial cell death before reducing testosterone to levels as low as those of castrated rats. In addition, E2 and androgen deprivation apparently cause epithelial cell death by distinct and independent pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Store-operated Ca2+ entry plays an important role in Ca2+ homeostasis in cells but the mechanisms of control of these channels are not completely understood. We describe an investigation of the role of the CD38-cyclic-ADP-ribose (cADPR)-ryanodine-channel (RyR) signaling pathway in store-operated Ca2+ entry in human smooth muscle. We observed that human myometrial cells have a functional store-operated Ca2+ entry mechanism. Furthermore, we observed the presence of transient receptor potential 1, 3, 4, 5, and 6 ion channels in human myometrial cells. Store-operated Ca2+ transient was inhibited by at least 50-70% by several inhibitors of the RyR, including ryanodine (10 µM), dantrolene (10 µM), and ruthenium red (10 µM). Furthermore, the cell permeable inhibitor of the cADPR-system, 8-Br-cADPR (100 µM), is a potent inhibitor of the store-operated entry, decreasing the store operated entry by 80%. Pre-incubation of cells with 100 µM cADPR and the hydrolysis-resistant cADPR analog 3-deaza-cADPR (50 µM), but not with ADP-ribose (ADPR) leads to a 1.6-fold increase in the store-operated Ca2+ transient. In addition, we observed that nicotinamide (1-10 mM), an inhibitor of cADPR synthesis, also leads to inhibition of the store-operated Ca2+ transient by 50-80%. Finally, we observed that the transient receptor potential channels, RyR, and CD38 can be co-immunoprecipitated, indicating that they interact in vivo. Our observations clearly implicate the CD38-cADPR-ryanodine signaling pathway in the regulation of store-operated Ca2+ entry in human smooth muscle cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of acetylcholine in the central and peripheral nervous systems is well established in adults. Cholinergic modulation of vascular functions and body fluid balance has been extensively studied. In the embryo-fetus, cholinergic receptors are widespread in the peripheral and central systems, including smooth muscle and the epithelial lining of the cardiovascular, digestive, and urinary systems, as well as in the brain. Fetal nicotine and muscarinic receptors develop in a pattern (e.g., amount and distribution) related to gestational periods. Cholinergic mechanisms have been found to be relatively intact and functional in the control of vascular homeostasis during fetal life in utero at least during the last third of gestation. This review focuses on the development of fetal nicotine and muscarinic receptors, and provides information indicating that central cholinergic systems are well developed in the control of fetal blood pressure and body fluid balance before birth. Therefore, the development of cholinergic systems in utero plays an important role in fetal vascular regulation, gastrointestinal motility, and urinary control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5)-triphosphate (IP3) in colon dysmotility induced by multiple organ dysfunction syndrome (MODS) caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC) in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11) vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05). After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05). Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.