73 resultados para plasticity regions
Resumo:
Among the goals of the Brazilian soybean improvement programmes, the breeding strategies for cultivars adapted to low latitudes have been included to extend crop areas and to increase production. Seeds of nine Brazilian soybean cultivars adapted to low latitudes were investigated regarding to their composition, and amino acid and antinutritional/toxic protein contents. Protein (394.5 ± 13.1 to 445.3 ± 8.0 g kg-1 dry matter) and oil (200.6 ± 1.2 to 232.3 ± 4.7 g kg-1 dry matter) contents showed low correlation to each other (r = -0.06). The total carbohydrate (141.7 ± 6.1 to 211.1 ± 15.0 g kg-1 dry matter) and ash contents (48.2 ± 4.2 to 52.2 ± 0.5 g kg-1 dry matter) were similar to data available for other soybean cultivars. All soybean cultivars presented low levels of tryptophan and sulphur amino acids. The lectin (1,152 to 147,456 HU kg-1 flour), trypsin inhibitor (34.45 ± 2.28 to 77.62 ± 2.63 g trypsin inhibited kg-1 flour), toxin (6,210 ± 134 to 34,650 ± 110 LD50 kg-1 flour) and urease (0.74 ± 0.02 to 1.22 ± 0.10 g kg¹ flour) presented variations in their contents amongst the cultivars. Compared to other soybean cultivars, urease was higher, the acute toxicity lower and the lectin and trypsin inhibitor contents similar to data available. In general, soybean cultivars showed similar biochemical composition to those developed in different geographic regions. The relevance of these findings to the agronomic features and to choice of soybean cultivars to be used as food or feed is discussed.
Resumo:
The present review describes recent research on the regulation by glutamate and Ca2+ of the phosphorylation state of the intermediate filament protein of the astrocytic cytoskeleton, glial fibrillary acidic protein (GFAP), in immature hippocampal slices. The results of this research are discussed against a background of modern knowledge of the functional importance of astrocytes in the brain and of the structure and dynamic properties of intermediate filament proteins. Astrocytes are now recognized as partners with neurons in many aspects of brain function with important roles in neural plasticity. Site-specific phosphorylation of intermediate filament proteins, including GFAP, has been shown to regulate the dynamic equilibrium between the polymerized and depolymerized state of the filaments and to play a fundamental role in mitosis. Glutamate was found to increase the phosphorylation state of GFAP in hippocampal slices from rats in the post-natal age range of 12-16 days in a reaction that was dependent on external Ca2+. The lack of external Ca2+ in the absence of glutamate also increased GFAP phosphorylation to the same extent. These effects of glutamate and Ca2+ were absent in adult hippocampal slices, where the phosphorylation of GFAP was completely Ca2+-dependent. Studies using specific agonists of glutamate receptors showed that the glutamate response was mediated by a G protein-linked group II metabotropic glutamate receptor (mGluR). Since group II mGluRs do not act by liberating Ca2+ from internal stores, it is proposed that activation of the receptor by glutamate inhibits Ca2+ entry into the astrocytes and consequently down-regulates a Ca2+-dependent dephosphorylation cascade regulating the phosphorylation state of GFAP. The functional significance of these results may be related to the narrow developmental window when the glutamate response is present. In the rat brain this window corresponds to the period of massive synaptogenesis during which astrocytes are known to proliferate. Possibly, glutamate liberated from developing synapses during this period may signal an increase in the phosphorylation
Resumo:
We have previously discovered a long-lasting enhancement of synaptic transmission in mammal autonomic ganglia caused by immunological activation of ganglionic mast cells. Subsequent to mast cell activation, lipid and peptide mediators are released which may modulate synaptic function. In this study we determined whether some mast cell-derived mediators, prostaglandin D2 (PGD2; 1.0 µM), platelet aggregating factor (PAF; 0.3 µM) and U44619 (a thromboxane analogue; 1.0 µM), and also endothelin-1 (ET-1; 0.5 µM) induce synaptic potentiation in the guinea pig superior cervical ganglion (SCG), and compared their effects on synaptic transmission with those induced by a sensitizing antigen, ovalbumin (OVA; 10 µg/ml). The experiments were carried out on SCGs isolated from adult male guinea pigs (200-250 g) actively sensitized to OVA, maintained in oxygenated Locke solution at 37oC. Synaptic potentiation was measured through alterations of the integral of the post-ganglionic compound action potential (CAP). All agents tested caused long-term (LTP; duration ³30 min) or short-term (STP; <30 min) potentiation of synaptic efficacy, as measured by the increase in the integral of the post-ganglionic CAP. The magnitude of mediator-induced potentiation was never the same as the antigen-induced long-term potentiation (A-LTP). The agent that best mimicked the antigen was PGD2, which induced a 75% increase in CAP integral for LTP (antigen: 94%) and a 34% increase for STP (antigen: 91%). PAF-, U44619-, and ET-1-induced increases in CAP integral ranged for LTP from 34 to 47%, and for STP from 0 to 26%. These results suggest that the agents investigated may participate in the induction of A-LTP
Resumo:
Cholinergic as well as monoaminergic neurotransmission seems to be involved in the etiology of affective disorders. Chronic treatment with imipramine, a classical antidepressant drug, induces adaptive changes in monoaminergic neurotransmission. In order to identify possible changes in cholinergic neurotransmission we measured total, membrane-bound and soluble acetylcholinesterase (Achase) activity in several rat brain regions after chronic imipramine treatment. Changes in Achase activity would indicate alterations in acetylcholine (Ach) availability to bind to its receptors in the synaptic cleft. Male rats were treated with imipramine (20 mg/kg, ip) for 21 days, once a day. Twenty-four hours after the last dose the rats were sacrificed and homogenates from several brain regions were prepared. Membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) after chronic imipramine treatment was significantly decreased in the hippocampus (control = 188.8 ± 19.4, imipramine = 154.4 ± 7.5, P<0.005) and striatum (control = 850.9 ± 59.6, imipramine = 742.5 ± 34.7, P<0.005). A small increase in total Achase activity was observed in the medulla oblongata and pons. No changes in enzyme activity were detected in the thalamus or total cerebral cortex. Since the levels of Achase seem to be enhanced through the interaction between Ach and its receptors, a decrease in Achase activity may indicate decreased Ach release by the nerve endings. Therefore, our data indicate that cholinergic neurotransmission is decreased after chronic imipramine treatment which is consistent with the idea of an interaction between monoaminergic and cholinergic neurotransmission in the antidepressant effect of imipramine
Resumo:
Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei) are involved in the generation of rapid eye movement (REM) sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase), the enzyme which inactivates acetylcholine (Ach) in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase) are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex) after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1) were assayed photometrically. The results (mean ± SD) obtained showed a statistically significant (Student t-test) increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025) and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05). Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05) and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05) were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity induced by REM sleep deprivation was specific to the pons, a brain region where cholinergic neurons involved in REM generation are located, and also to brain regions which receive cholinergic input from the pons (the thalamus and medulla oblongata). During REM sleep extracellular levels of Ach are higher in the pons, medulla oblongata and thalamus. The increase in Achase activity in these brain areas after REM sleep deprivation suggests a higher rate of Ach turnover.
Resumo:
This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC). Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical) properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.
Resumo:
Differences in age and sex distribution as well as FAB (French-American-British classification) types have been reported for acute leukemias in several countries. We studied the demographics and response to treatment of patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) between 1989 and 2000 in Teresina, Piauí, and compared these results with reports from Brazil and other countries. Complete data concerning 345 patients (230 ALL, 115 AML) were reviewed. AML occurred predominantly in adults (77%), with a median age of 34 years, similar to that found in the southeast of Brazil but lower than the median age in the United States and Europe (52 years). FAB distribution was similar in children and adults and FAB-M2 was the most common type, as also found in Japan. The high frequency of FAB-M3 described in most Brazilian studies and for Hispanics in the United States was not observed. Overall survival for adults was 40%, similar to other studies in Brazil. A high mortality rate was observed during induction. No clinical or hematological parameter influenced survival in the Cox model. ALL presented the characteristic peak of incidence between 2-8 years. Most of the cases were CD10+ pre-B ALL. In 25%, abnormal expression of myeloid antigens was observed. Only 10% of the patients were older than 30 years. Overall survival was better for children. Age and leukocyte count were independent prognostic factors. These data demonstrate that, although there are regional peculiarities, the application of standardized treatments and good supportive care make it possible to achieve results observed in other countries for the same chemotherapy protocols.
Resumo:
Intrahippocampal administration of kainic acid (KA) induces synaptic release of neurotrophins, mainly brain-derived neurotrophic factor, which contributes to the acute neuronal excitation produced by the toxin. Two protein tyrosine kinase inhibitors, herbimycin A and K252a, were administered intracerebroventricularly, in a single dose, to attenuate neurotrophin signaling during the acute effects of KA, and their role in epileptogenesis was evaluated in adult, male Wistar rats weighing 250-300 g. The latency for the first Racine stage V seizure was 90 ± 8 min in saline controls (N = 4) which increased to 369 ± 71 and 322 ± 63 min in animals receiving herbimycin A (1.74 nmol, N = 4) and K252a (10 pmol, N = 4), respectively. Behavioral alterations were accompanied by diminished duration of EEG paroxysms in herbimycin A- and K252a-treated animals. Notwithstanding the reduction in seizure severity, cell death (60-90% of cell loss in KA-treated animals) in limbic regions was unchanged by herbimycin A and K252a. However, aberrant mossy fiber sprouting was significantly reduced in the ipsilateral dorsal hippocampus of K252a-treated animals. In this model of temporal lobe epilepsy, both protein kinase inhibitors diminished the acute epileptic activity triggered by KA and the ensuing morphological alterations in the dentate gyrus without diminishing cell loss. Our current data indicating that K252a, but not herbimycin, has an influence over KA-induced mossy fiber sprouting further suggest that protein tyrosine kinase receptors are not the only factors which control this plasticity. Further experiments are necessary to elucidate the exact signaling systems associated with this K252a effect.
Resumo:
The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model - experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.
Resumo:
The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs) in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P < 0.001), and coherence analysis revealed strong connectivity (coefficients >0.7) between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001). Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.
Resumo:
Neutrophils are widely known as proinflammatory cells associated with tissue damage and for their early arrival at sites of infection, where they exert their phagocytic activity, release their granule contents, and subsequently die. However, this view has been challenged by emerging evidence that neutrophils have other activities and are not so short-lived. Following activation, neutrophil effector functions include production and release of granule contents, reactive oxygen species (ROS), and neutrophil extracellular traps (NETs). Neutrophils have also been shown to produce a wide range of cytokines that have pro- or anti-inflammatory activity, adding a modulatory role for this cell, previously known as a suicide effector. The presence of cytokines almost always implies intercellular modulation, potentially unmasking interactions of neutrophils with other immune cells. In fact, neutrophils have been found to help B cells and to modulate dendritic cell (DC), macrophage, and T-cell activities. In this review, we describe some ways in which neutrophils influence the inflammatory environment in infection, cancer, and autoimmunity, regulating both innate and adaptive immune responses. These cells can switch phenotypes and exert functions beyond cytotoxicity against invading pathogens, extending the view of neutrophils beyond suicide effectors to include functions as regulatory and suppressor cells.
Resumo:
In Brazil, the grape and wine production takes place mainly in the state of Rio Grande do Sul, and the region "Serra" is known as the traditional wine region. In the last years, new areas have emerged, with emphasis for the Campanha region; the red wines from this region have low acidity, little color intensity, and are wines to drink while young, even when produced from grape varieties such as Merlot and Cabernet Sauvignon. The objective of this study was to evaluate the influence of different maceration types on the phenolic compounds of Merlot wines made with grapes produced in two regions of Rio Grande do Sul, Serra and Campanha, as well as to identify the key differences between the wines produced. The localization of the vineyards seems to have more influence on the wine characteristics than the maceration type. The color due copigmentation was an important aspect in the wines made with short maceration. The effect of extended maceration was different than the expected for the Campanha region wines; the extended maceration increased the extraction of tannins resulting in greater color intensity and a greater amount of anthocyanins. The pH control seems to be a key factor for the Campanha region wines.
Resumo:
Abstract In search for renewable energy sources, the Brazilian residual biomasses stand out due to their favorable physical and chemical properties, low cost, and their being less pollutant. Therefore, they are likely to be used in biorefineries in the production of chemical inputs to substitute fossil fuels. This substitution is possible due to the high contents of carbohydrates (>40%), low contents of extractives (<20%), ashes (<8%) and moisture (<8%) found in these residual biomasses. High calorific values of all residues also offer them the chance to be used in combustion. A principal components analysis (PCA) was performed for better understanding of the samples and their hysic-chemical properties. Thus, this study aimed to characterize biomasses from the north (babassu residues, such as mesocarp and endocarp; pequi and Brazil nut) and northeast (agave and coconut) regions of Brazil, in order to contribute to the preservation of the environment and strengthen the economy of the region.