212 resultados para phosphorous fertilizer
Resumo:
This paper describes the data obtained for the growth of sugar cane, Variety Co 419, and the amount and rate of absorption of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and silicon, according to the age of the plant, in the soil and climate conditions of the state of S. Paulo, Brazil. An experiment was installed in the Estação Experimental de Cana de Açúcar "Dr. José Vizioli", at Piracicaba, state of S. Paulo, Brazil, and the soil "tèrra-roxa misturada" presented the following composition: Sand (more than 0,2 mm)........................................................................ 8.40 % Fine sand (from 0,2 to less than 0,02 mm)................................................. 24.90 % Silt (from 0,02 to less than 0,002 mm)...................................................... 16.40 % Clay (form 0,002 mm and less)................................................................ 50.20 % pH 10 g of soil and 25 ml of distilled water)..................................................... 5.20 %C (g of carbon per 100 g of soil)................................................................. 1.00 %N (g of nitrogen per 100 g of soil)............................................................... 0.15 P0(4)-³ (me. per 100 g of soil, soluble in 0,05 normal H2SO4) ............................... 0.06 K+ (exchangeable, me. per 100 g of soil)....... 0.18 Ca+² (exchangeable, me. per 100 g of soil)...... 2.00 Mg+² (exchangeable, me. per 100 g of soil)...... 0.66 The monthly rainfall and mean temperature from January 1956 to August 1957 are presented in Table 1, in Portuguese. The experiment consisted of 3 replications of the treatments: without fertilizer and with fertilizer (40 Kg of N, from ammonium sulfate; 100 Kg of P(2)0(5) from superphosphate and 40 Kg K2 O, from potassium chloride). Four complete stools (stalks and leaves) were harvested from each treatment, and the plants separated in stalks and leaves, weighed, dried and analysed every month from 6 up to 15 months of age. The data obtained for fresh and dry matter production are presented in table 2, and in figure land 2, in Portuguese. The curves for fresh and dry matter production showed that fertilized and no fertilized sugar cane with 6 months of age presents only 5% of its total weight at 15 months of age. The most intense period of growth in this experiment is located, between 8 and 12 months of age, that is between December 1956 and April 1957. The dry matter production of sugar cane with 8 and 12 months of age was, respectively, 12,5% and 87,5% of the total weight at 15 months of age. The growth of sugar cane in relation to its age follows a sigmoid curve, according to the figures 1, 2 and 3. The increase of dry matter production promoted by using fertilizer was 62,5% when sugar cane was 15 months of age. The concentration of the elements (tables 4 and 5 in Portuguese) present a general trend of decreasing as the cane grows older. In the stalks this is true for all elements studied in this experiment. But in the leaves, somme elements, like sulfur and silicon, appears to increase with the increasing of age. Others, like calcium and magnesium do not show large variations, and finally a third group, formed by nitrogen, phosphorus and potassium seems to decrease at the beginning and later presents a light increasing. The concentration of the elements was higher in the leaves than in the stalks from 6 up to 15 months of age. There were some exceptions. Potassium, magnesium and sulfur were higher in the stalks than in the leaves from 6 up to 8 or 9 months of age. After 9 months, the leaves presented more potassium, magnesium and sulfur than the stalks. The percentage of nitrogen in the leaves was lower in the plants that received fertilizer than in the plants without fertilizer with 6, 7, 8, 10, 11 and 13 months of age. This can be explained by "dilution effect". The uptake of elements by 4 stools (stalks and leaves) of sugar cane according to the plant age is showed in table 6, in Portuguese. The absorption of all studied elements, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur and silicon, was higher in plants that received fertilizer. The trend of uptake of nitrogen and potassium is similar to the trend of production of dry matter, that is, the maximum absorption of those two nutrients occurs between 9 and 13 months of age. Finaly, the maxima amounts of elements absorbed by 4 stools (stalks and leaves) of sugar cane plants that received fertilizer are condensed in the following table: Element Maximum absorption in grams Age of the plants in months Nitrogen (N) 81.0 14 Phosphorus (P) 6.8 15 Potassium (K) 81.5 15 Calcium (Ca) 19.2 15 Magnesium (Mg) 13.9 13 Sulfur (S) 9.3 15 Silicon (Si) 61.8 15 It is very interesting to note the low absorption of phosphorus even with 100 kg of P2O5 per hectare, aplied as superphosphate. The uptake of phosphorus was lower than calcium, magnesium and sulfur. Also, it is noteworthy the large amount of silicon absorbed by sugar cane.
Resumo:
This paper deals with different types of fertilizer applications in coffee hill in the moment of transfering the plants to the field. During the first year, irrigation was applied in the dry season. After one year, the following characters were analised: plant height; plant diameter; number of productive branches; lenght and number of nodes in the first branch of the plant. The results obtained can be summarized as follows: the irrigation employed did not affect the treatments and mineral fertilizers combined with organic fertilizer were better than the others treatments used for comparisons.
Resumo:
This paper deals with the mineral composition fresh and dry matter production of different organs of 4, 5 old guava (Psidium guajava L.) growth on sandy soil (Savanna) without fertilizer. The data obtained for fresh and dry matter productior are present in table 2 (in Portuguese). The concentration of the elements are presented in table 3 (in Portuguese). Finally, the total amounts of elements absorbed by guava are given in the following table: Element Plant (grams) Fruits (grams) Nitrogen (N) 42,55 20,4 Phosphorus (P) 3,84 2,3 Potassium (K) 52,01 31,3 Calcium (Ca) 47,81 0,2 Magnesium (Mg) 2,4
Resumo:
WATER-CULTURE EXPERIMENTS. Two water-culture experiments were carried out to study the absorption and the translocation of radiozinc in young coffee plants as influenced by two factors, namely, concentration of heavy metals (iron, man ganese, copper and molybdenum) and method of application. Inert zinc was supplied at an uniform rate of 0. 05 p. p. m.; the levels of iron supply were 0, 1.0, and 10.0 p. p.m.; manganese was supplied in three doses 0, 0.5, and 5.0 p. p.m.; copper- 0, 0. 02, and 0. 2 p. p. m.; molybdenum- 0, 0. 01, and 0. 1 p. p. m. When applied to the nutrient solution the activity os the radiozinc (as zinc chloride) was 0. 15 microcuries per plant. In the study of the leaf absorption, Zn65 was supplied at the level of 0. 10 microcuries per plant; in this case the radioative material was brushed either on the lower or on the upper surface or both two pairs of mature leaves. The absorption period was 8 weeks. The radioactivity assay showed the following results: 1 - Among the heavy metals herein investigated the iron concentration did not affect the uptake of the radiozinc; by raising the level of Mn, Cu and Mo ten times, the absorption dropped to 50 per cent and even more when compared with the control plants; when, however, these micronutrients were omitted from the nutrient solution, an increase in the uptake of zinc was registered in the minus Cu treatment only. The effects of high levels of Mn, Cu and Mo probably indicate an interionic competition for a same site on a common binding substance in the cell surface. 2 - The absorption of the radiozinc directly applied to the leaf surface reached levels as high as 8 times that registered when the root uptake took place. Among the three methods of application which have been tried, brushing the lower surface of the leaves proved to be the most effective; this result is easily understood since the stomatal openings of the coffee leaves an preferentially located in the lower surface - in this treatment, about 40 per cent of the activity was absorved and around 12 per cent were translocated either to the old or to the newer organs. Chemical analyses for heavy metals, were carried out only in the plants received Zn65Cl2 in the nutrient solution; the results were as follows; 1 - Control plants had, per 1,000 gm, of dry weight the following amounts in mg.: Zn- 48 in the roots and 29 in the tops; Fe- 165 in the roots and 9 in the tops; Mn- 58 in the roots and 15 in the tops, Cu- 15 in the roots and 1. 2 in the tops; Mo- 2. 8 in the roots and 0. 45 in the tops. 2 - The effect of different levels of micronutrients in the composition of the plants can be summarized as follows: Fe and Zn- when omitted from the nutrient solution, the iron and zinc contents in the roots decreased, no variation being noted in the tops; the higher dosis caused an accumulation in the roots but no apparent effect in the tops; Mn- by omitting this micronutrient a decrease in its content in the roots was noted, where as the concentration in the tops was the same; Mo- no variation in roots and tops contents when molybdenum was omitted; higher dosis of manganese and molybdenum increased the amounts formed both in the roots and in the tops. 3 - The influence of the different concentrations of micronutrients heavy metals on the zinc content of the coffee plants can be described by saying that: Fe and Mo- no marked variation; Mn- no effect when omitted, reduced amount when the high dosis was supplied; Mn- when the plants did not receive manganese the zinc content in roots and tops was the same as in the control plants; a decrease in the zinc content of the total plant occurred when the high dosis was employed; Cu -the situation is similar to that described for manganese. Hence, results showed by the chemical analyses roughly correspond to those of the radioactivity assay; the use of the tracer technique, however, gave best informations along this line. SOIL-POTS EXPERIMENTS. The two types of soils which when selected support the most extensive coffee plantations in the State of São Paulo, Brazil: "arenito de Bauru", a light sandy soil and "terra roxa legitima", a red soil derived from basalt. Besides NPK containing salts, the coffee plants were given two doses of inert zinc (65 and 130 mg ZnCl2 per pot) and radiozinc at a total activity of 10(6) counts/minute. The results of the countings can be summarized as follows: 1 - When plants were grown in "arenito de Bauru" the activity absorbed as per cent of the total activity supplied was not affected by the dosis of inert zinc. The highest value found was around 0. 1 per cent. 2 - For the "terra roxa" plants, the situation is almost the same; there was, however, a slight increase in the absorption of the radiozinc when 130 mgm of ZnClg2 was given: a little above 0. 2 per cent of the activity supplied was absorbed. The results clearly show that the young coffee plants practically did not absorb none of the zinc supplied; two reasons at least could be pointed out to explain such a fact: 1 - Zinc fixation by an exchange with magnesium or by filling holes in the octahedral layer of aluminosilicates, probably kaolinite; 2 - No need for fertilizer zinc in the particular stage of life cycle under which the experiment was set up. The data from chemical analysis are roughly parallel to the above mentioned. When one attempts to compare - by taking data herein reported zinc uptake from nutrient solution, leaf brushing or from fertilizers in the soil, a practical conclusion can be drawn: the control of zinc deficiency in coffee plants should not be done by adding the zinc salts to the soil; in other words: the soil applications used so extensively in other countries seem not to be suitable for our conditions; hence zinc sprays should be used wherever necessary.
Resumo:
This paper deals with the determination of the content of macronutrients in pulp and beans of three coffee varieties, namely 'Mundo Novo', 'Caturra Amarelo' and 'Bourbon Amarelo'. Samples were collected in plantations located in the three types of soils herein most of S. Paulo, Brazil, coffee is grown, that is, "terra roxa legítima" (Ribeirão Preto), "massapé-salmourão" (Mocóca), and "arenito de Bauru" (Pindorama). The following main conclusions were drawn after statistical analysis of data obtained hereby. There is no statistical difference among the three varieties . Average contents of macronutrients, as per cent of the dry matter, are the following: N P K Ca Mg S bean 1,71 0,10 1,53 0,27 0,15 0,12 pulps 1.78 0,14 3,75 0,41 0,13 0,15 Samples collected in Mocóca ("massapé-salmourão") had lower N and K contents, probably due to lack of availability of these elements in the soil, as suggested by its analysis. Results obtained in this work are in good agreement with data described elsewhere. Out of the total of elements contained in the whole fruit the following proportions are exported as clean coffee: N - 2/3, P and K - 1/2, Ca, Mg and S - 1/3. It is clear therefore that a substantial amount of elements absorbed from the soil remains in the pulp or in the dry hulls which result from processing. From this fact raises the interest of using these residues as fertilizer in the coffee plantations.
Resumo:
An experiment was carried out with common bean (Phaseolus vulgaris, L.) in a Red Yellow Latossol, sandy phase, in order to study the influence of foliar spraying of the Hanway nutrient solution (NPKS) at grain filling stage on: 1) grain yield; 2) the uptake of fertilizer and soil nitrogen by this crop through the root system and 3) the efficiency of utilization of the nitrogen in the foliar spray solution by the grain. The results of this experiment showed that the foliar application of the Hanway solution with ammonium nitrate at the pod filling period caused severe leaf burn and grain yield was inferior to that of the plants which received a soil application of this fertilizer at the same stage. These facts can be attributed to the presence of ammonium nitrate in the concentration used. The composition of final spray was: 114,28 Kg NH4NO3 + 43,11 Kg potassium poliphosphate + 12,44 Kg potassium sulphate per 500 litres. The uptake of nitrogen fertilizer through the root system and the efficiency of its utilization was greater than that through the leaves.
Resumo:
Two nutrient foliar sprays, namely Ferti-Foliage (21-21 -21) and Wuxal (9-9-7), were applied to peanut plants under field conditions. Both were applied 23 days after germination of seeds, at the beginning of flowering, and during flowering. Other treatments were application of NPK fertilizer (9-30-16, 250 kg/ha) into the soil and check (no fertilizer). The experiment was carried out on a latosolic B "Terra Roxa" soil, sowing being made on March 6th and harvest on July 10th. Statistical analysis showed no significant differences amongst treatments. However, certain treatments had better yields. For instance, application of Ferti-Foliage showed a tendency to increasing number of pods per plant and number of seeds per pod. Same product when applied at the beginning of flowering had a tendency to increase production of seeds and of forage. Application of NPK (9-30-16) into the soil showed similar results.
Resumo:
The effects of the application of a macronutrient foliar spray combined with micronutrients and growth regulators (Unifol) on peanut grown in a soil with high fertility were investigated. A control without fertilizer and a soil fertilization (250 kg/ha) with NPK 9-30-16 were also established. Other treatments were as follows: Unifol fertilizer (18-12 16) applied 23 days after germination: Unifol (18-12-6) applied at the beginning of flowering; Unifol (18-12-6) applied during flowering, and Unifol (18-12-6) applied 23 days after germination plus Unifol (7-23-7) at the beginning of flowering. No significant differences were found amongst treatments, but certain treatments showed higher productivity e given Unifol fertilizer (18-12-6) applied 23 days after germination plus Unifol (7-23-7) at the flower anthesis. In this treatment, the number of pods, weight of seeds and production of seeds were higher. Best production of forage occurred in the treatment receiving soil fertilization.
Resumo:
The comparative response of three sorghum (E-57, TEY 101 and C- 102) and of three corn cultivars (HMD-7974, Centralmex and Piranão) to N, P and K applications was studied in a soil from Anhembi, SP, classifield as Distrophic quartz sand (AQd) was studied. Leaf analyses were made to assess the nutritional status of the two crops. Main conclusions were the following. 1. Sorghum yieldel more than corn; 2. Both sorghum and corn varieties showed different capacities to absorb N, P and K from the soil and to fertilizer application; 3. There was no response to K2O fertilization; 4. Only Piranão increased yield when suplemented with a mixture of micronutrientes; 5. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 6. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 7. The following leaf levels were considered to be adequate, respectively for sorghum and corn: N - 2,00 - 2,25%, 3,25 - 3,50%; P - 0,30 - 0,40, 0,45 - 0,50; K -2,00 - 2,50, 2,20 - 2,40%; Ca - 0,20 - 0,40, 0,44- 0,72% Mg - 0,25 - 0,40, 0,34 - 0,60%; S - 0,50 - 0,70, 0,72 -0,80; Cu - 7 - 10, 11 - 15%; Fe - 84 - 170, 98 - 125%; Mn - 58 - 72, 66 - 85%; Zn - 10 - 14, 18 - 22; critical levels, however, do very depending upon cultivar.
Resumo:
The objective of this experiment was to quantify the extramatrical mycelium of the arbuscular mycorrhizal (AM) fungus Glomus etunicatum (Becker & Gerdemann) grown on maize (Zea mays L. var. Piranão) provided with various levels of phosphate fertilizer and harvested at 30, 60 and 90 days after planting (DAP). Total extramatrical mycelium (TEM) was extracted from soil using a modified membrane filtration method, followed by quantification using a grid intersection technique. Active extramatrical mycelium (AEM) proportion was determined using an enzymatic method which measured dehydrogenase activity by following iodonitrotetrazolium reduction. At low levels of added P, there was relatively less TEM than at high levels of added P, but the AEM proportion at low soil P availability was significantly greater than at high soil P.
Resumo:
In the process of phosphate rock acidulation, several impure P compounds may be formed along with the desirable Ca and NH4 phosphates. Such compounds normally reduce the content of water-soluble P and thus the agronomic effectiveness of commercial fertilizers. In order to study this problem, a greenhouse experiment consisting of three consecutive corn crops was conducted in samples of a Red-Yellow Latosol (Typical Hapludox) in a completely randomized design (6 x 2 x 2), with four replicates. Six commercial fertilizers were added to 2 kg of soil at a rate of 70 mg kg-1 P, based on the content of soluble P in neutral ammonium citrate plus water (NAC + H2O) of the fertilizers. Fertilizer application occurred either in the original form or leached to remove the water-soluble fraction, either by mixing the fertilizer with the whole soil in the pots or with only 1 % of its volume. The corn plants were harvested 40 days after emergence to determine the shoot dry matter and accumulated P. For the first crop and localized application, the elimination of water-soluble P from the original fertilizers resulted in less bioavailable P for the plants. For the second and third crops, the effects of P source, leaching and application methods were not as evident as for the first, suggesting that the tested P sources may have similar efficiencies when considering successive cropping. The conclusion was drawn that the water-insoluble but NAC-soluble fractions of commercial P fertilizers are not necessarily inert because they can provide P in the long run.
Resumo:
In Brazil, Bradyrhizobium inoculation has successfully replaced the use of N fertilizer on soybean [Glycine max (L) Merr.] crops. However, with the expansion of no-tillage cropping systems in the Cerrados region, the idea that it is necessary to use small N rates at the sowing to overcome problems related with N immobilization has become widespread, mainly when soybean is cultivated after a non-legume crop. In this study we examined soybean response to small rates of N fertilizer under no-tillage (NT) and conventional tillage (CT) systems. Four experiments (a completely randomized block with five replicates) were carried out in a red yellow oxisol, during the periods of 1998/1999 and 1999/ 2000, under NT and CT. The treatments consisted of four urea rates (0, 20, 30 and 40 kg ha-1 N). All treatments were inoculated with Bradyrhizobium japonicum strains SEMIA 5080 and SEMIA 5079, in the proportion 1 kg of peat inoculant (1,5 x 10(9) cells g-1) per 50 kg of seeds. In both experiments, soybean was cultivated after corn and the N fertilizer was band applied at sowing. In all experiments, N rates promoted reductions of up to 50 % in the nodule number at 15 days after the emergence. Regardless of the management system, these reductions disappeared at the flowering stage and there was no effect of N rates on either the number and dry weight of nodules or on soybean yields. Therefore, in the Brazilian Cerrados, when an efficient symbiosis is established, it is not necessary to apply starter N rates on soybean, even when cultivated under notillage systems.
Resumo:
Boron deficiency in coffee is widely spread in Brazilian plantations, but responses to B fertilizer have been erratic, depending on the year, form and time of application and B source. A better understanding of the effects of B on plant physiology and anatomy is important to establish a rational fertilization program since B translocation within the plant may be affected by plant anatomy. In this experiment, coffee plantlets of two varieties were grown in nutrient solutions with B levels of 0.0 (deficient), 5.0 µM (adequate) and 25.0 µM (high). At the first symptoms of deficiency, leaves were evaluated, the cell walls separated and assessed for B and Ca concentrations. Scanning electron micrographs were taken of cuts of young leaves and branch tips. The response of both coffee varieties to B was similar and toxicity symptoms were not observed. Boron concentrations in the cell walls increased with B solution while Ca concentrations were unaffected. The Ca/B ratio decreased with the increase of B in the nutrient solution. In deficiency of B, vascular tissues were disorganized and xylem walls thinner. B-deficient leaves had fewer and deformed stomata.
Resumo:
In spite of the normally low content of organic matter found in sandy soils, it is responsible for almost the totality of cation exchange capacity (CEC), water storage and availability of plant nutrients. It is therefore important to evaluate the impact of alternative forest exploitation on the improvement of soil C and N accumulation on these soils. This study compared pure and mixed plantations of Eucalyptus grandis and Pseudosamanea guachapele, a N2-fixing leguminous tree, in relation to their effects on soil C and N stocks. The studied Planosol area had formerly been covered by Panicum maximum pasture for at least ten years without any fertilizer addition. To estimate C and N contents, the soil was sampled (at depths of 0-2.5; 2.5-5.0; 5.0-7.5; 7.5-10.0; 10.0-20.0 and 20.0-40.0 cm), in pure and mixed five-year-old tree plantations, as well as on adjacent pasture. The natural abundance 13C technique was used to estimate the contribution of the soil organic C originated from the trees in the 0-10 cm soil layer. Soil C and N stocks under mixed plantation were 23.83 and 1.74 Mg ha-1, respectively. Under guachapele, eucalyptus and pasture areas C stocks were 14.20, 17.19 and 24.24 Mg ha-1, respectively. For these same treatments, total N contents were 0.83; 0.99 and 1.71 Mg ha-1, respectively. Up to 40 % of the soil organic C in the mixed plantation was estimated to be derived from trees, while in pure eucalyptus and guachapele plantations these same estimates were only 19 and 27 %, respectively. Our results revealed the benefits of intercropped leguminous trees in eucalyptus plantations on soil C and N stocks.
Resumo:
Nitrate reductase is the first enzyme in the pathway of nitrate reduction by plants, followed by glutamine synthetase, which incorporates ammonia to glutamine. The purpose of this study was to evaluate the nitrate reductase and glutamine synthetase activity, total soluble protein content, N and Ni content in coffee leaves during fruit development under field conditions to establish new informations to help assess the N nutritional status and fertilizer management. The experimental design was in randomized complete blocks, arranged in a 3 x 6 factorial design, with five replications. The treatments consisted of 3 N rates (0 - control, 150 and 300 kg ha-1) and six evaluation periods (January, February, March, April, May, and June) in six-year-old coffee (Coffea arabica L.) plants of Catuaí Vermelho IAC 44 cv. The nitrate reductase and glutamine synthetase activities, leaf soluble protein, and N concentrations increased linearly with the N rates. During fruit development, the enzyme activity, leaf soluble protein and N content decreased, due to the leaf senescence process caused by nutrient mobilization to other organs, e.g, to the berries. Leaf Ni increased during fruit development. Beans and raisin-fruits of plants well-supplied with N had higher Ni contents. Enzyme activities, total leaf N and leaf soluble protein, evaluated during the green fruit stage in March, were significantly correlated with coffee yield. These variables can therefore be useful for an early assessment of the coffee N nutritional status as well as coffee yield and N fertilization management.