97 resultados para phosphine oxides
Resumo:
Foliar analysis of biochemical parameters were carried out in order to investigate the influence of air pollutants on two tropical tree species (Licania tomentosa (Benth.) and Bauhinia forfícata (Link.)). Special attention was given to tropospheric ozone due to the fact that concentration levels in the region were found to be up to 140 µg m-3 for a 4 h average time, which is well above the value that can cause injuries to orchides and tobacco (59 µg m-3). Other pollutants such as nitrogen and sulphur oxides were measured and their ambient concentrations were also associated to biochemical alterations in the investigated species.
Resumo:
Sediment samples from Tietê river were submitted to chemical and sequential extractions of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn). It was followed a single extraction by using 0.1 mol L-1 hydrochloric acid and a sequential procedure to evaluate possible chemical associations described as exchangeable, carbonate, reducible oxides, sulfide, organic matter and residual fractions. High concentrations of heavy metals were determined at Pirapora reservoir, which is closer to the Metropolitan Area of São Paulo while for Barra Bonita reservoir, the results showed low concentrations for such elements. Acid volatile sulfides, grain size distribution and carbon contents were also determined.
Resumo:
Hydrotalcite-like compounds having Mg partially replaced by Cu or Mn were prepared and used as precursors for two mixed oxides (Cu-OM50 and Mn-OM50) that were evaluated for SOx removal in the presence of O2, NO and CO. Under SO2/O2 reaction system, SOx removal was slightly higher over Cu-OM50. The addition of CO and NO to the feed markedly hindered the SO2 oxidation over Cu-OM50 while no significant effect was observed for Mn-OM50. For the regeneration step, the use of propane instead of H2 reduces regeneration capacity, mainly for Cu-OM50. Mn-OM50 was less affected by the feed composition, suggesting that it was a promising additive for SOx removal.
Resumo:
In this work, the perovskite-type oxides LaNiO3, LaMnO3, La0,7Sr0,3NiO3 and La0,7Sr0,3MnO3 were prepared by co-precipitation and tested in the NO reduction with CO at 400 and 500 ºC for 10 h. The catalysts were characterized by X-ray diffraction, temperature programmed reduction with hydrogen, nitrogen adsorption and chemical analysis. The nonstoichiometric oxygen was quantified by temperature programmed reduction, and the catalytic tests showed that the La0,7Sr0,3MnO3 catalyst presented the higher performance for the reduction reaction of NO with CO. The partial substitution of lanthanum by strontium increased the NO conversion and the N2 yield.
Resumo:
Magnetic soils forming on tuffite of the region of Alto Paranaíba, Minas Gerais, Brazil, usually contain iron-rich spinels exceptionally rich in magnesium and titanium. In this work, samples of the magnetically separated portion from the sand fraction of a Brunizém (Chernossolo) and from its mother-rock material were analyzed with synchrotron X-ray diffraction and 57Fe-Mössbauer spectroscopy. Magnesioferite (MgFe2O4) and maghemite (its pure non-stoichiometric spinel structure, Fe8/3 ⊕ 1/3 O4, where ⊕ = cation vacancy, corresponds to γFe2O3) were the magnetic iron oxides so identified. Basing on these data, a consistent chemical-mineralogical model is proposed for the main transformation steps involving these iron oxides in the pedosystem, starting on magnesioferrite to finally render hematite (αFe2O3), passing through maghemite as an intermediate specie.
pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method
Resumo:
This work aimed at putting in evidence the influence of the pH on the chemical nature and properties of the synthesized magnetic nanocomposites. Saturation magnetization measurements evidenced a marked difference of the magnetic behavior of samples, depending on the final pH of the solution after reaction. Magnetite and maghemite in different proportions were the main magnetic iron oxides actually identified. Synthesis with final pH between 9.7-10.6 produced nearly pure magnetite with little or no other associated iron oxide. Under other synthetic conditions, goethite also appears in proportions that depended upon the pH of the synthesis medium.
Resumo:
The oxygen reduction reaction was studied in alkaline media using manganese oxides obtained from spent batteries as electrocatalysts. Three processes were used to recover manganese oxides from spent batteries. The particles obtained were in the range from 8 to 11 nm. The electrochemical experiments indicated a good electrocatalytic activity toward oxygen reduction using the different samples and showing approximately a direct transference of 4 electrons during the process. Even though all the processes were efficient, the best result was observed for the prepared sample using reactants of low cost.
Resumo:
This work presents a density functional theory study of the norbornene ROMP metathesis reactions. The energies have been calculated in a Grubbs catalyst model Cl2(PH3)2Ru=CH2. The geometries and energy profile are similar to the Grubbs metilydene (Cl2(PCy3)2Ru=CH2 real model. It was found that the metathesis reaction proceeds via associative mechanism (catalyst-norbonene) followed by dissociative substitution of a phosphine ligand with norbonene, giving a monophosphine complex. The results are in reasonable agreement with the available experimental data. The dissociation energy of the phosphines is predicted to be 23.2 kcal mol-1.
Resumo:
This review first discusses the limitations of many of the supports and stationary phases used in reversed phase high performance liquid chromatography and then describes those, developed more recently, that present better stabilities and more versatile selectivities. Emphases will be given to stationary phases that use higher purity silicas, hybrid silicas, monolithic silicas, metallic oxides and mixed oxides as supports and those that have embedded polar groups or contain phenyl or fluoro groups as the stationary phase as well as the phases used for mixed mode or hydrophilic interaction separations. These modern stationary phases facilitate the analysis of complex mixtures.
Resumo:
The Letreiro do Quinto rock shelter is located in the rural area of the city of Pedro II, Piauí, Brazil. The sandstone walls of the shelter are covered with prehistoric rupestrian paintings, painted in patterns of yellow and light and dark red hues. The chemical-mineralogical characterization of the prehistoric pigments was made with energy dispersive spectroscopy, scanning electron microscopy, energy dispersive X-ray fluorescence and 57Fe transmission Mössbauer spectroscopy at 110 K. Results confirm the occurrence of hematite- and goethite-rich ochres and also that the pigment layers are indeed made of a mixture of clay minerals mixed with iron oxides.
Resumo:
The recent increase in the world biodiesel demand, along with the need to reduce costs while improving the environmental sustainability of the entire biodiesel production chain, have led to the search for heterogeneous catalysts that would be efficient and highly amenable to recycling. Many classes of materials have been tested for these purposes. Among these are zeolites, ion-exchange resins, inorganic oxides, guanidines, metal complexes, layered compounds and ionic liquids. This review article describes the structure, properties, synthesis and performance of compounds that are catalytic active in both esterification and transesterification reactions.
Resumo:
Automotive catalyst, using in Brazil since 1992, is a essential technology for vehicular emissions control. Noble metals are the active phase of these catalysts, and cerium zirconium mixed oxides (CZ), responsibles for the oxygen storage capacity (OSC), one of the most important aspect for the operational performance of the catalyst. In this context, the oxireduction properties analysis of CZ and Pd/CZ (palladium supported in CZ) system are the objective of this study, as well as, the impact of the thermal aging in the OSC. Aging consisted of treatments at 900 or 1200 °C, for 12 or 36 h, in oxidizing condition.
Resumo:
Vitamin C, an exogenous antioxidant, is essential to human health. In this study, a method was validated to serum vitamin C quantification by HPLC-UV. Its stability with and without the use of tris [2-carboxy-ethyl] phosphine hydrochloride (TCEP), at -20 and -80 °C, in serum and supernatant were also evaluated. Analysis showed r² > 0.99, precision CV% < 15% and % bias < 15%, being linear, precise and accurate. The stability test revealed that using TCEP in serum storage at -20 and -80 °C or in supernatant at -80 °C the vitamin C levels remain stable for 30 and 12 days, respectively.
Resumo:
This study was carried out to synthesize, characterize and evaluate the application of mesoestruturated catalysts MCM-41, 5%MoO3-MCM-41 and 5%NiO-MCM-41 in the hydrolysis of microcrystalline cellulose. XRD results indicate that the phase of mesoporous MCM-41 was obtained and that the introduction of metal oxides did not affect this mesoporous phase. About the heterogeneous hydrolysis reaction, it was observed that the increase in temperature results in a higher concentration of glucose and the catalyst 5%MoO3-MCM-41 provides the highest concentrations of glucose.
Resumo:
The objective of the present study was to evaluate the adsorption of the herbicide Diuron onto smectite and Fe oxides minerals. Ninety mg of each mineral, 1 mL of 0.15 mol L-1 CaCl2 and 8 mL of Diuron (0.25-10.00 mg L-1) were used in triplicates. These materials were shaken, ultra centrifuged and the supernatant collected and analysed on a UV-Vis spectrophotometer. The Diuron presented low adsorption onto clay mineral fractions. Adsorption was greater onto Fe oxides at pH 7.0, possibly due to proximity to the point of zero charge of these minerals.