87 resultados para oxidation kinetics
Resumo:
Electrode kinetics and complex formation of Zn(II) using doxycycline, chlortetracycline, oxytetracycline, tetracycline, minocycline, amoxicillin, chloramphenicol and cephaloglycin were reported at pH = 7.30 ± 0.01 in = 1.0 molL-1 NaClO4 used as supporting electrolyte at 25.0°C. Kinetic parameters viz. transfer coefficient (α), degree of irreversibility (λ) and rate constant (k) were determined. The study showed that 'Transition state' behaves between reactant (O) and product (R) response to applied potential. The stability constants varied from 2.14 to 10.31 showing that these drugs or their complexes could be used against Zn toxicity.
Resumo:
Divalent metal complexes of ligand 2-methoxybenzylidenepyruvate with Fe, Co, Ni, Cu and Zn as well as sodium salt were synthesized and investigated in the solid state. TG curves of these compounds were obtained with masses sample of 1 and 5mg under nitrogen atmosphere. Different heating rates were used to characterize and study these compounds from the kinetic point of view. The activation energy and pre-exponential factor were obtained applying the Wall-Flynn-Ozawa method to the TG curves. The obtained data were evaluated and the values of activation energy (Ea / kJ mol-1) was plotted in function of the conversion degree (α). The results show that due to mass sample, different activation energies were obtained. The results are discussed mainly taking into account the linear dependence between the activation energy and the pre exponential factor, where was verified the effect of kinetic compensation (KCE) and possible linear relations between the dehydrations steps of these compounds.
Resumo:
This study was conducted to evaluate the decomposition kinetics of gaseous ozone in peanut grains. This evaluation was made with 1-kg peanut samples, moisture contents being 7.1 and 10.5% wet basis (w.b.), placed in 3-liter glass containers. The peanut grains were ozonated at the concentration of 450 µg L-1, at 25 and 35 ºC, with gas flow rates of 1.0 and 3.0 L min-1. Time of saturation was determined by quantifying the residual concentration of ozone after the gas passed through the grains to constant mass. The decomposition kinetics of ozone was evaluated after the grain mass was ozone-saturated. For the peanut grains whose moisture content was 7.1% (w.b.), at 25 and 35ºC and with flow rates of 1.0 and 3.0 L min-1, the values obtained for time of saturation of gaseous ozone ranged between 173 and 192 min; the concentration of saturation was approximately 260 µg L-1. For the grains whose moisture content was 10.5% (w.b.), a higher residual concentration of gaseous ozone was obtained at 25 ºC, that of 190 µg L-1. As regards the half-life of ozone, the highest value obtained was equivalent to 7.7 min for grains ozonated at 25 ºC, while for those with moisture content of 10.5% at 35 ºC, half-life was 3.2 min. In the process of ozone decomposition in peanut grains, temperature was concluded to be the key factor. An increase of 10 ºC in the temperature of the grains results in a decrease of at least 43% in the half-life of ozone.
Resumo:
ABSTRACT Roasting is one of the most complex coffee processing steps due to simultaneous transfers of heat and mass. During this process, beans lose mass because of fast physical and chemical changes that will set color and flavor of the commercial coffee beverage. Therefore, we aimed at assessing the kinetics of mass loss in commercially roasted coffee beans according to heating throughout the processing. For that, we used samples of 350-g Arabica coffee processed grains with water content of 0.1217 kga kg-1, in addition to a continuous roaster with firing gas. The roaster had initial temperatures of 285, 325, 345 and 380 °C, decreasing during the process up to 255, 285, 305 and 335 °C respectively. Mass loss was calculated by the difference between grain weight before and after roasting. We observed a linear variation directly dependent on roaster temperature. For each temperature during the process was obtained a constant mass loss rate, which was reported by the Arrhenius model with r2 above 0.98. In a roaster in non-isothermal conditions, the required activation energy to start the mass loss in a commercial coffee roasting index was 52.27 kJ mol -1.
Resumo:
Enterotoxaemia, a common disease that affects domestic small ruminants, is mainly caused by the epsilon toxin of Clostridium perfringens type D. The present study tested four distinct immunization protocols to evaluate humoral response in lambs, a progeny of non-vaccinated sheep during gestation. Twenty-four lambs were randomly allocated into four groups according to age (7, 15, 30 and 45 days), receiving the first dose of epsilon toxoid commercial vaccine against clostridiosis with booster after 30 days post vaccination. Indirect ELISA was performed after the first vaccine dose and booster to evaluate the immune response of the lambs. Results showed that for the four protocols tested all lambs presented serum title considered protective (≥0.2UI/ml epsilon antitoxin antibodies) and also showed that the anticipation of primovaccination of lambs against enterotoxaemia conferred serum title considered protective allowing the optimization of mass vaccination of lambs.
Resumo:
It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.
Resumo:
Insulin-dependent diabetes mellitus is caused by autoimmune destruction of pancreatic ß cells. Non-obese diabetic (NOD) mice spontaneously develop diabetes similar to the human disease. Cytokines produced by islet-infiltrating mononuclear cells may be directly cytotoxic and can be involved in islet destruction coordinated by CD4+ and CD8+ cells. We utilized a semiquantitative RT-PCR assay to analyze in vitro the mRNA expression of TNF-alpha and IFN-gamma cytokine genes in isolated islets (N = 100) and spleen cells (5 x 10(5) cells) from female NOD mice during the development of diabetes and from female CBA-j mice as a related control strain that does not develop diabetes. Cytokine mRNAs were measured at 2, 4, 8, 14 and 28 weeks of age from the onset of insulitis to the development of overt diabetes. An increase in IFN-gamma expression in islets was observed for females aged 28 weeks (149 ± 29 arbitrary units (AU), P<0.05, Student t-test) with advanced destructive insulitis when compared with CBA-j mice, while TNF-alpha was expressed in both NOD and CBA-j female islets at the same level at all ages studied. In contrast, TNF-alpha in spleen was expressed at higher levels in NOD females at 14 weeks (99 ± 8 AU, P<0.05) and 28 weeks (144 ± 17 AU, P<0.05) of age when compared to CBA-j mice. The data suggest that IFN-gamma and TNF-alpha expression in pancreatic islets of female NOD mice is associated with ß cell destruction and overt diabetes.
Resumo:
Hypochlorous acid (HOCl) released by activated leukocytes has been implicated in the tissue damage that characterizes chronic inflammatory diseases. In this investigation, 14 indole derivatives, including metabolites such as melatonin, tryptophan and indole-3-acetic acid, were screened for their ability to inhibit the generation of this endogenous oxidant by stimulated leukocytes. The release of HOCl was measured by the production of taurine-chloramine when the leukocytes (2 x 10(6) cells/mL) were incubated at 37ºC in 10 mM phosphate-buffered saline, pH 7.4, for 30 min with 5 mM taurine and stimulated with 100 nM phorbol-12-myristate acetate. Irrespective of the group substituted in the indole ring, all the compounds tested including indole, 2-methylindole, 3-methylindole, 2,3-dimethylindole, 2,5-dimethylindole, 2-phenylindole, 5-methoxyindole, 6-methoxyindole, 5-methoxy-2-methylindole, melatonin, tryptophan, indole-3-acetic acid, 5-methoxy-2-methyl-3-indole-acetic acid, and indomethacin (10 µM) inhibited the chlorinating activity of myeloperoxidase (MPO) in the 23-72% range. The compounds 3-methylindole and indole-3-acetic acid were chosen as representative of indole derivatives in a dose-response study using purified MPO. The IC50 obtained were 0.10 ± 0.03 and 5.0 ± 1.0 µM (N = 13), respectively. These compounds did not affect the peroxidation activity of MPO or the production of superoxide anion by stimulated leukocytes. By following the spectral change of MPO during the enzyme turnover, the inhibition of HOCl production can be explained on the basis of the accumulation of the redox form compound-II (MPO-II), which is an inactive chlorinating species. These results show that indole derivatives are effective and selective inhibitors of MPO-chlorinating activity.
Resumo:
Oxysterols are 27-carbon atom molecules resulting from autoxidation or enzymatic oxidation of cholesterol. They are present in numerous foodstuffs and have been demonstrated to be present at increased levels in the plasma of patients with cardiovascular diseases and in atherosclerotic lesions. Thus, their role in lipid disorders is widely suspected, and they might also be involved in important degenerative diseases such as Alzheimer's disease, osteoporosis, and age-related macular degeneration. Since atherosclerosis is associated with the presence of apoptotic cells and with oxidative and inflammatory processes, the ability of some oxysterols, especially 7-ketocholesterol and 7β-hydroxycholesterol, to trigger cell death, activate inflammation, and modulate lipid homeostasis is being extensively studied, especially in vitro. Thus, since there are a number of essential considerations regarding the physiological/pathophysiological functions and activities of the different oxysterols, it is important to determine their biological activities and identify their signaling pathways, when they are used either alone or as mixtures. Oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever. Moreover, a substantial accumulation of polar lipids in cytoplasmic multilamellar structures has been observed with cytotoxic oxysterols, suggesting that cytotoxic oxysterols are potent inducers of phospholipidosis. This basic knowledge about oxysterols contributes to a better understanding of the associated pathologies and may lead to new treatments and new drugs. Since oxysterols have a number of biological activities, and as oxysterol-induced cell death is assumed to take part in degenerative pathologies, the present review will focus on the cytotoxic activities of these compounds, the corresponding cell death signaling pathways, and associated events (oxidation, inflammation, and phospholipidosis).
Resumo:
Human serum albumin (HSA) is the most abundant protein in the intravascular compartment. It possesses a single thiol, Cys34, which constitutes ~80% of the total thiols in plasma. This thiol is able to scavenge plasma oxidants. A central intermediate in this potential antioxidant activity of human serum albumin is sulfenic acid (HSA-SOH). Work from our laboratories has demonstrated the formation of a relatively stable sulfenic acid in albumin through complementary spectrophotometric and mass spectrometric approaches. Recently, we have been able to obtain quantitative data that allowed us to measure the rate constants of sulfenic acid reactions with molecules of analytical and biological interest. Kinetic considerations led us to conclude that the most likely fate for sulfenic acid formed in the plasma environment is the reaction with low molecular weight thiols to form mixed disulfides, a reversible modification that is actually observed in ~25% of circulating albumin. Another possible fate for sulfenic acid is further oxidation to sulfinic and sulfonic acids. These irreversible modifications are also detected in the circulation. Oxidized forms of albumin are increased in different pathophysiological conditions and sulfenic acid lies in a mechanistic junction, relating oxidizing species to final thiol oxidation products.
Resumo:
Angiotensin-converting enzyme inhibitors reduce blood pressure and attenuate cardiac and vascular remodeling in hypertension. However, the kinetics of remodeling after discontinuation of the long-term use of these drugs are unknown. Our objective was to investigate the temporal changes occurring in blood pressure and vascular structure of spontaneously hypertensive rats (SHR). Captopril treatment was started in the pre-hypertensive state. Rats (4 weeks) were assigned to three groups: SHR-Cap (N = 51) treated with captopril (1 g/L) in drinking water from the 4th to the 14th week; SHR-C (N = 48) untreated SHR; Wistar (N = 47) control rats. Subgroups of animals were studied at 2, 4, and 8 weeks after discontinuation of captopril. Direct blood pressure was recorded in freely moving animals after femoral artery catheterism. The animals were then killed to determine left ventricular hypertrophy (LVH) and the aorta fixed at the same pressure measured in vivo. Captopril prevented hypertension (105 ± 3 vs 136 ± 5 mmHg), LVH (2.17 ± 0.05 vs 2.97 ± 0.14 mg/g body weight) and the increase in cross-sectional area to luminal area ratio of the aorta (0.21 ± 0.01 vs 0.26 ± 0.02 μm²) (SHR-Cap vs SHR-C). However, these parameters increased progressively after discontinuation of captopril (22nd week: 141 ± 2 mmHg, 2.50 ± 0.06 mg/g, 0.27 ± 0.02 μm²). Prevention of the development of hypertension in SHR by using captopril during the prehypertensive period prevents the development of cardiac and vascular remodeling. Recovery of these processes follows the kinetic of hypertension development after discontinuation of captopril.
Resumo:
Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.
Resumo:
Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-13C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate 13CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-13C-galactose to all children. The molar ratios of 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of 13C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.
Resumo:
As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.
Antioxidant activity of rosemary and oregano ethanol extracts in soybean oil under thermal oxidation
Resumo:
Four experiments were conducted to measure the antioxidant activity of ethanol extracts of rosemary and oregano compared with synthetic antioxidants such as TBHQ and BHA/BHT. The antioxidant activity was determined and results differed from those of the Oven test at 63º C. Peroxide values and absorptivities at 232 nm of soybean oil under Oven test were lower in treatments with 25, 50, 75, 100 and 200 mg.Kg-1 TBHQ than in treatments with 1000 mg.Kg-1 oregano extract (O), 500 mg.Kg-1 rosemary extract (R) and their mixture R+O. All the treatments were effective in controlling the thermal oxidation of oils; the natural extracts were as effective as BHA+BHT and less effective than TBHQ. The natural extracts were mixed with 25, 50, 75 and 100 mg.Kg-1 TBHQ and then added to the oil. No improvement in antioxidative properties was observed. The best antioxidant concentration could be determined from polynomial regression and quadratic equation from the experimental data.