141 resultados para osmotic swelling
Resumo:
In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.
Resumo:
Semiconductor nanoparticles, such as quantum dots (QDs), were used to carry out experiments in vivo and ex vivo with Trypanosoma cruzi. However, questions have been raised regarding the nanotoxicity of QDs in living cells, microorganisms, tissues and whole animals. The objective of this paper was to conduct a QD nanotoxicity study on living T. cruzi protozoa using analytical methods. This was accomplished using in vitro experiments to test the interference of the QDs on parasite development, morphology and viability. Our results show that after 72 h, a 200 μM cadmium telluride (CdTe) QD solution induced important morphological alterations in T. cruzi, such as DNA damage, plasma membrane blebbing and mitochondrial swelling. Flow cytometry assays showed no damage to the plasma membrane when incubated with 200 μM CdTe QDs for up to 72 h (propidium iodide cells), giving no evidence of classical necrosis. Parasites incubated with 2 μM CdTe QDs still proliferated after seven days. In summary, a low concentration of CdTe QDs (2 μM) is optimal for bioimaging, whereas a high concentration (200 μM CdTe) could be toxic to cells. Taken together, our data indicate that 2 μM QD can be used for the successful long-term study of the parasite-vector interaction in real time.
Resumo:
We assessed fluconazole susceptibility in 52 Candida tropicalis clinical strains using seven antifungal susceptibility methods, including broth microdilution (BMD) [standard M27 A3 (with neutral and acid pH), ATB Fungus 3, Vitek 2 system and flow cytometric analysis] and agar-based methods (disk diffusion and E-test). Trailing growth, detection of cell-associated secreted aspartic proteases (Saps) and morphological and ultrastructural traits of these clinical strains were also examined. The ranges of fluconazole 24 h-minimum inhibitory concentration (MIC) values were similar among all methods. The essential agreement among the methods used for MIC determinations was excellent and all methods categorised all strains as susceptible, except for one strain that showed a minor error. The presence of the trailing effect was assessed by six methods. Trailing positivity was observed for 86.5-100% of the strains. The exception was the BMD-Ac method where trailing growth was not observed. Morphological and ultrastructural alterations were detected in C. tropicalis trailing cells, including mitochondrial swelling and cell walls with irregular shapes. We tested the production of Saps in 13 C. tropicalis strains expressing trailing growth through flow cytometry. Our results showed that all of the C. tropicalis strains up-regulated surface Sap expression after 24 h or 48 h of exposure to fluconazole, which was not observed in untreated yeast strains. We concluded that C. tropicalis strains expressing trailing growth presented some particular features on both biological and ultrastructural levels.
Resumo:
Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis. Central nervous system infection is the most common clinical presentation followed by pulmonary, skin and eye manifestations. Cryptococcosis is primarily treated with amphotericin B (AMB), fluconazole (FLC) and itraconazole (ITC). In the present work, we evaluated the in vitro effect of terbinafine (TRB), an antifungal not commonly used to treat cryptococcosis. We specifically examined the effects of TRB, either alone or in conjunction with AMB, FLC and ITC, on clinical C. neoformans isolates, including some isolates resistant to AMB and ITC. Broth microdilution assays showed that TRB was the most effective drug in vitro. Antifungal combinations demonstrated synergism of TRB with AMB, FLC and ITC. The drug concentrations used for the combination formulations were as much as 32 and 16-fold lower than the minimum inhibitory concentration (MIC) values of FLC and AMB alone, respectively. In addition, calcofluor white staining revealed the presence of true septa in hyphae structures that were generated after drug treatment. Ultrastructural analyses demonstrated several alterations in response to drug treatment, such as cell wall alterations, plasma membrane detachment, presence of several cytoplasmic vacuoles and mitochondrial swelling. Therefore, we believe that the use of TRB alone or in combination with AMB and azoles should be explored as an alternative treatment for cryptococcosis patients who do not respond to standard therapies.
Resumo:
In this study, the in vitro effects of amodiaquine (AQ) monotherapy on the egg output of paired adult Schistosoma mansoni worms and their survival during in vitro culture were assessed. In addition, the gross morphological alterations of male and female worms caused by AQ were visually observed under a dissecting microscope. AQ significantly reduced the daily egg output of paired adult S. mansoni worms following incubation for 14 days at 1-5 µg/mL, but not at 0.5 µg/mL, compared with the control group. AQ also reduced the survival of male and female worms at concentrations of 2 and 5 µg/mL, respectively. Moreover, exposure to 5 µg/mL AQ caused severe swelling and/or localisation of black content in the body of all male and female worms within one or two days of incubation; subsequently, shrinkage in the male worms and elongation in the female worms were observed. The initial morphological alterations caused by AQ occurred along the intestinal tract of the male and female worms. To our knowledge, this is the first study to report not only the efficacy of AQ at concentrations lower than 5 µg/mL on paired adult S. mansoni worms, but also the effects of AQ on the intestinal tracts of worms in in vitro culture.
Resumo:
ABSTRACT Investigations into water potentials in the soil-plant system are of great relevance in environments with abiotic stresses, such as salinity and drought. An experiment was developed using bell pepper in a Neossolo Flúvico (Fluvent) irrigated with water of six levels of electrical conductivity (0, 1, 3, 5, 7 and 9 dS m-1) by using exclusively NaCl and by simulating the actual condition (using a mixture of salts). The treatments were arranged in a randomized block design, in a 6 × 2 factorial arrangement, with four replicates. Soil matric (Ψm) and osmotic (Ψo) potentials were determined 70 days after transplanting (DAT). Soil total potential was considered as the sum of Ψm and Ψo. Leaf water (obtained with the Scholander Chamber) and osmotic potentials were determined before sunrise (predawn) and at noon at 42 and 70 DAT. There were no significant differences between the salt sources used in the irrigation water for soil and plant water potentials. The supply of salts to the soil through irrigation water was the main factor responsible for the decrease in Ψo in the soil and in bell pepper leaves. The total potential of bell pepper at predawn reached values of -1.30 and -1.33 MPa at 42 and 70 DAT, respectively, when water of 9 dS m-1 was used in the irrigation. The total potential at noon reached -2.19 MPa. The soil subjected to the most saline treatment reached a water potential of -1.20 MPa at 70 DAT. There was no predawn equilibrium between the total water potentials of the soil and the plant, indicating that soil potential cannot be considered similar to that of the plant. The determination of the osmotic potential in the soil solution should not be neglected in saline soils, since it has strong influence on the calculation of the total potential.
Resumo:
A work was carried out with the purpose of verifying the biochemical changes associated to soybean (Glycine max (L.) Merrill) seeds osmoconditioning. Seeds of the UFV 10, IAC 8 and Doko RC cultivars harvested at R8 development stage and submitted to different treatments were used. The biochemical evaluations were performed during seed storage, after the hydration-dehydration process. Initially, seeds were osmoconditioned in a polyethylene glycol (PEG 6000) solution, with the osmotic potential of -0.8 MPa and 20ºC, for a period of four days. After that, seeds were dried back until the initial moisture content (10-11%) and stored in natural conditions for three and six months. Two controls were used: untreated seeds (dry seeds) and water soaked seeds. Seed changes in protein and lipid, hexanal accumulation and fatty acids contents were evaluated. The results showed that seed storage under laboratory natural conditions caused reduction in protein, lipid and polyunsaturated fatty acids content and promoted hexanal production. Storage periods reduced protein levels for all treatments, however the PEG 6000 treatment showed lower protein reduction. The soybean seed storage increased hexanal production, but hexanal levels were smaller with osmoconditioning comparing to the other imbibition treatments.
Resumo:
Somatic embryogenesis is an efficient method for the production of target cells for soybean genetic transformation. However, this method still offers low percentages of plant regeneration, and perhaps is related to the maturation process and high morphological abnormalities of the matured embryos. This study aimed to identify a maturation medium that could contribute to the outcome of more efficient plant regeneration results. Embryogenic clusters, derived from cotyledons of immature seeds of the soybean cultivars Bragg and IAS5, were used as starting material for embryos development. Different maturation media were tested by using 6% maltose, 3% sucrose or 6% sucrose, combined with or without 25 g L-1 of the osmotic regulator polyethylene glycol (PEG-8000). The histodifferentiated embryos were quantified and classified in morphological types. Percentages of converted embryos were analyzed. Cultivar Bragg resulted in higher matured embryo quantities, but lower percentages were obtained for the conversion in comparison to cultivar IAS5. While the addition of PEG did not affect the number of embryos converted into plants, 6% sucrose enhanced the conversion percent significantly.
Resumo:
The objective of this work was to evaluate in vitro storage of Piper aduncum and P. hispidinervum under slow-growth conditions. Shoots were stored at low temperatures (10, 20 and 25°C), and the culture medium was supplemented with osmotic agents (sucrose and mannitol - at 1, 2 and 3%) and abiscisic acid - ABA (0, 0.5, 1.0, 2.0 and 3.0 mg L-1). After six-months of storage, shoots were evaluated for survival and regrowth. Low temperature at 20ºC was effective for the in vitro conservation of P. aduncum and P. hispidinervum shoots. In vitro cultures maintained at 20ºC on MS medium showed 100% survival with slow-growth shoots. The presence of mannitol or ABA, in the culture medium, negatively affected shoot growth, which is evidenced by the low rate of recovered shoots.
Resumo:
Objective To identify and analyze the prevalence of cranial computed tomography findings in patients admitted to the emergency unit of Hospital Universitário Cajuru. Materials and Methods Cross-sectional study analyzing 200 consecutive non contrast-enhanced cranial computed tomography reports of patients admitted to the emergency unit of Hospital Universitário Cajuru. Results Alterations were observed in 76.5% of the patients. Among them, the following findings were most frequently observed: extracranial soft tissue swelling (22%), bone fracture (16.5%), subarachnoid hemorrhage (15%), nonspecific hypodensity (14.5%), paranasal sinuses opacification (11.5%), diffuse cerebral edema (10.5%), subdural hematoma (9.5%), cerebral contusion (8.5%), hydrocephalus (8%), retractable hypodensity /gliosis/ encephalomalacia (8%). Conclusion The authors recognize that the most common findings in emergency departments reported in the literature are similar to the ones described in the present study. This information is important for professionals to recognize the main changes to be identified at cranial computed tomography, and for future planning and hospital screening aiming at achieving efficiency and improvement in services.
Resumo:
Synovial chondromatosis is a benign condition characterized by synovial proliferation and metaplasia, with development of cartilaginous or osteocartilaginous nodules within a joint, bursa or tendon sheath. In the shoulder, synovial osteochondromatosis may occur within the glenohumeral joint and its recesses (including the tendon sheath of the biceps long head), and in the subacromial-deltoid bursa. Such condition can be identified either by radiography, ultrasonography or magnetic resonance imaging, showing typical features according to each method. Radiography commonly shows ring-shaped calcified cartilages and periarticular soft tissues swelling with erosion of joint margins. Ultrasonography demonstrates hypoechogenic cartilaginous nodules with progressive increase in echogenicity as they become calcified, with development of posterior acoustic shadow in case of ossification. Besides identifying cartilaginous nodules, magnetic resonance imaging can also demonstrate the degree of synovial proliferation. The present study is aimed at describing the imaging findings of this entity in the shoulder.
Resumo:
The physical-chemical process of swelling in water-based gel of natural polymers is investigated with the purpose of applying these systems to biomedical materials for controlled release of drugs. In this work we develop a study about the sol-gel transition of solutions of chitosan in the presence of formaldehyde and glutaraldehyde like crosslinking agents and we have determined the effect of many aditives in the time of gelification from the elaborated sistems. The phisical-chemistry process of swelling of the formed gels was evaluated in function of the degree of crosslinking of the incorporated aditives and the pH. Gelling times of chitosan solutions were obtained using viscosimetric measurement, in the pre-gel state, as well as condutivity ones.The results obtained suggest that component concentration modifies the kinetic profile of the transition and the swelling behavior. Regarding H+ content, the gels were highly susceptible to swelling in acidic conditions, which characterize this system as pH - sensitive.
Resumo:
Natural or modified chondroitin sulfate was incorporated in to polymethacrylate to obtain isolated films. The addition of polysaccharide to synthetic polymers occurred at different rates. Isolated films were micro and macroscopically characterized and swelling index and water vapor transmission were determined. Results indicated changed transparency and flexibility, coupled to their dependence on increase in polysaccharide concentration. A similar occurrence was reported in the permeability to water vapor and swelling degree. Films composed of modified chondroitin sulfate, 90:10 concentration, showed hydration levels, permeability and morphological properties which allow them to be applied as excipients in the development of new drug delivery systems.
Resumo:
The effects of sorbitol and formaldehyde on the morphology, water absorption and mechanical properties of sodium alginate films were analyzed. The morphology of the films indicated the presence of small aggregates in the surface of uncrosslinked films, which disappeared with the crosslinking process. The water uptake and percentage of elongation increased with the addition of sorbitol in uncrosslinked films. At the same time, a decrease in tensile strength and Young's modulus occurred. The swelling ratio and water uptake of crosslinked alginate/sorbitol films decreased with an increase in sorbitol content suggesting an enhanced crosslinking density due to the presence of plasticizer.
Resumo:
The study evaluated the efficiency of chemical (phosphorylation) and physical (extrusion) modifications of the starch of broken rice. Results demonstrated a reduction in the moisture content of extruded and phosphorylated broken rice and an increase in the ash content of phosphorylated broken rice. Both phosphorylation and extrusion increased cold water binding capacity, swelling power, and solubility. Extruded and phosphorylated pastes were stable under refrigeration, but only extruded paste was stable when submitted to freezing. Phosphorylated paste had the lowest viscosity and the highest stability during heating, while the extruded one gelatinized without heating, but had higher losses during heating.