88 resultados para multi-objective control
Resumo:
The use of organic matter that improves the physical, chemical and biological soil properties has been studied as an inducer of suppressiveness to soilborne plant pathogens. The objective of this work was to evaluate the effect of different sources and concentrations of organic matter on tomato bacterial wilt control. Two commercially available organic composts and freshly cut aerial parts of pigeon pea (Cajanus cajan) and crotalaria (Crotalaria juncea) were incorporated, in concentrations of 10, 20 and 30 % (v/v), into soil infested with Ralstonia solanacearum. The soil with the fresh organic matter of pigeon pea and crotalaria was incubated for 30 and 60 days before planting. Tomato seedlings of cv. Santa Clara were transplanted into polyethylene bags with 3 kg of the planting substrate (infested soil + organic matter). The wilting symptoms and percentage of flowering plants were evaluated for 45 days. All evaluated concentrations with incorporation and incubation for 30 days of aerial parts of pigeon pea and crotalaria controlled 100% tomato bacterial wilt. With 60 days of incubation, only the 10 % concentration of pigeon pea and crotalaria did not control the disease. These results suggest that soil incorporation of fresh aerial parts of pigeon pea and crotalaria is an effective method for bacterial wilt control.
Resumo:
OBJECTIVE: To verify whether the eradication of anal condylomata acuminata was effective for local control of HPV infection using anal colposcopy and anal brush cytology.METHODS: We evaluated 147 patients treated for anal margin and/or anal canal condyloma, with 108 HIV-positive and 39 HIV-negative individuals. The average age for males was 40 years for HIV-positive and 27.5 for HIV-negative. In females, the mean age was 37.5 years for HIV-positive and 31.5 for HIV-negative.RESULTS: Twenty-four patients (16.3%) had normal cytology and anal colposcopy, 16 (10.9%) normal cytology and altered anal colposcopy, 52 (35.4%) normal anal colposcopy and altered cytology, and 55 (37.4%) had altered cytology and anal colposcopy.CONCLUSION: the eradication of clinical lesions failed to locally control HPV infection.
Resumo:
Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented.
Resumo:
The objective of this work was to evaluate the influence of weeding frequency on cultivar Centralmex green corn yield. Two experiments were conducted in Mossoró-RN (Brazil), with the use of sprinkler irrigation. A random block design with four replicates was used. It was observed that the total number and weight (TW) of unhusked green ears, the number and weight of marketable unhusked ears and the number and weight of marketable husked ears were reduced under no weeding treatment. The number timing of weedings did not influence green corn yield, except for one weeding at 60 DAP, which was equivalent to the "no weeding" treatment, for TW. When maize is marketed considering the total number of green ears, higher net income is obtained when one weeding is carried out 45 days after planting.
Resumo:
Intercropping combined with competitive maize cultivars can reduce the use of herbicides to control weeds. The objective of this work was to evaluate the effects of intercropping cowpea and maize, as well as hand-weeding on maize morphology and yield. The experimental design was in randomized complete blocks, with treatments arranged in split-plots and five replications. The plots consisted of four maize cultivars (BA 8512, BA 9012, EX 4001, EX 6004) and the split-plots consisted of the following treatments: no-weeding; twice hand-weeding (20 and 40 days after sowing); and intercropping with cowpea ('Sempre Verde' cultivar), both maize and cowpea sown at the same time. The variables evaluated were: maize fresh green ears and grain yield; characteristics of internodes, leaves, tassels, ears, grains; plant height and ear insertion height; number of weed plants and species; fresh and dry biomass of weed species and cowpea. Ten weed species were outstanding during the experiment, many of them from the Poaceae family. No interactions were found between weed control method and maize cultivars for most variables evaluated; and plants from hand-weeded split-plots showed superior mean values compared to plants from non-weeded and intercropped split-plots, both not differing from each other. The cowpea was inefficient in controlling weed, reducing the maize yields and not producing any grain. The maize cultivars 'BA 8512' and 'BA 9012 showed the highest mean green ear yield, and the highest grain yield in hand-weeded, no-weeded and intercropped split-plots. On the other hand, the maize cultivar 'EX 6004' showed such high means only in no-weeded and intercropped split-plots. 'EX 4001 presented the worst means in these variables for hand-weeded, no-weeded ant intercropped split-plots.
Resumo:
The majority of cotton grown commercially in the world has white lint, but recently, there has been a growing interest in colored lint cotton in several countries, including Brazil. The use of naturally-colored fiber reduces chemical pollution. The objective of this paper was to evaluate cotton cultivar fiber yield in response to weed control via intercropping with gliricídia. Cultivars BRS-Verde (greenish fibers), BRS-Rubi (reddish brown fibers), BRS-Safira (brown fibers), and BRS-187 8H (white fibers) were submitted to the following treatments: no hoeing, two hoeings (at 20 and 40 days after transplanting), and cotton intercropped with gliricídia. In the intercropped treatment, gliricídia was planted between rows of cotton plants, using one seedling pit-1, in pits spaced 50.0 cm apart. Twelve weed species predominated in the experiment, many of them belonging to the Poaceae family. Weeds occurred at different frequencies and in a non-uniform manner in the experimental area. Cultivars did not influence weed dry matter. Intercropping with gliricídia reduced weed dry matter but did not prevent reductions in cotton fiber and seed cotton yield, which were higher in hoed plots. Cultivar BRS Safira had the highest fiber yield, but no differences were observed between cultivars regarding to seed cotton yield.
Resumo:
A reduction in herbicide use is one of modern agriculture's main interests and several alternatives are being investigated with this objective, including intercropping. Gliricídia (Gliricidia sepium) mulch has no allelopathic effect on corn or beans but significantly decreased the population of some weed species. The objective of this study was to evaluate green ear and grain yield in corn cultivars as a response to weed control achieved via intercropping with gliricidia. A completely randomized block design with five replicates and split-plots was used. Cultivars AG 1051, AG 2060, BRS 2020, and PL 6880 (assigned to plots) were submitted to the following treatments: no hoeing, hoeing (performed at 20 and 40 days after sowing the corn), and corn intercropped with gliricidia. Gliricidia was grown in a transplanting system to ensure uniform germination and fast establishment in the field. Seeding was made in 200-cell trays with one seed per cell (35 mL volume). The plants emerged two to three days after sowing and were transplanted to a permanent site two to three days after emergence. Corn was sown on the same day gliricidia was transplanted. Sixteen weed species occurred at different frequencies, with uneven distribution in the experimental area. Cultivars AG 1051 and AG 2060 were the best with reference to most characteristics employed to evaluate green corn yield. Cultivar AG 1051 provided the highest grain yield. The highest green ear yield and grain yield values were obtained with hoeing. However, the fact that intercropped plots showed intermediate yield between the values obtained for hoed and non-hoed plots indicates that gliricidia was beneficial to corn, and exerted a certain level of weed control.
Resumo:
Herbicides have simplified weed control, but the use of herbicides, besides being costly, resulted in the selection of herbicide-resistant weed biotypes and has become an environmental contamination factor. Herbicide use reduction is one of the goals of modern agriculture, with several alternatives being investigated, including intercropping. The objective of this study was to evaluate the effects of cowpea and corn cultivar intercropping on weed control and corn green-ear (immature ears with 80% humidity grains) and grain yield. A completely randomized block design with split-plots and four replications was used. AG 1051, AG 2060 and PL 6880 corn cultivars (assigned to plots) were submitted to the four treatments: no weeding, two hoe-weeding (22 and 41 days after planting), and intercropping with cowpea (BR 14 and IPA 206 cultivars, with indeterminate growth). The cowpea was planted (with corn planting) between the corn rows, in pits 1.0 m apart, with two plants per pit. The corn cultivars did not differ from each other as to weed density (WD), fresh above-ground weed biomass (WB), green-ear yield and grain yields. Higher WD and WB mean values were found in no weeding subplots; lower mean values in two hoe-weeding subplots; and intermediate mean values in intercropped subplots, indicating that cowpea plants had, to a certain extent, control over weeds. The no-weeded plots and the intercropped plots had lower green-ear and grain yields. Although the cowpea cultivars had a certain control over weeds (mean reductions of 22.5 and 18.3%, in terms of green matter density and weight of the above-ground part of weeds, respectively), they also competed against the corn plants, leading to yield reduction (mean reductions of 17.0 and 32% in green ear and grain yield, respectively). The cowpea cultivars did not produce grain, certainly due to the strong competition exerted by the corn and weeds on cowpea plants.
Resumo:
Reduced use of herbicides that cause environmental pollution problems is of great interest in modern agriculture. Soil mulching with gliricidia (Gliricidia sepium) branches does not have an allelopathic effect on corn, but decreases weed populations. The objective of this study was to evaluate the effects of gliricidia planting density, when grown as an intercrop, on weed control and corn yield parameters. A randomized block design with split-plots and ten replicates was adopted. Corn cultivars AG 1051 and BM 3061 were grown without hoeing, with two hoes (at 24 and 44 days after planting), and intercropped with gliricidia (planted simultaneously with corn, between crop rows, using two seedlings/pit, spaced at 30, 40, or 50 cm). Twenty-one weed species were found in the experimental area. Increased gliricidia planting density reduced weed biomass, but no difference was found between weed biomass in the intercrop and weed biomass in non-hoed corn. Gliricidia intercropped with corn, planted at a row spacing of 30 cm, did not significantly differ from hoed corn in most characteristics considered to evaluate green corn yield, although mean values were smaller. As to the number and weight of marketable green ears, reductions of 5% and 13%, respectively, were observed. Intercropping caused a 17% reduction in grain yield, reducing the losses (36%) observed in non-hoed corn by more than 50%. The highest green ear yield and grain yield values were obtained with two hoeings, while the lowest values were observed for non-hoed corn. The cultivars did not differ regarding green ear yield and grain yield.
Resumo:
There is interest in the identification of the best seeding density for new corn hybrids and on reduced use of herbicides for weed control. The objective of this study was to evaluate the effects of seeding density (30, 50, 70, and 90 thousand plants ha-1) and weed control on green ear yield and grain yield in corn cultivar AG 1051. A completely randomized block design was adopted with split-plots (seeding densities assigned to plots) and ten replicates. Weed control was achieved by means of two hoeings and by planting corn intercropped with gliricidia (between corn rows, in pits spaced 0.3 m apart). A "no weeding"treatment was included as well. Increased seeding density increased the total number and weight of marketable green ears and decreased the biomass of both weeds and gliricidia. In non-weeded, intercropped and hoed plots, the maximum grain yield values achieved as seeding density increased were 7,881, 7,021, and 9,213 kg ha-1, respectively, obtained with populations of 67 thousand, 74 thousand, and 67 thousand plants per hectare, respectively. Intercropping did not control weeds (26 species) and provided weed growth, green ear yield, and grain yield (at the lowest densities) similar to those obtained without hoeing, except for total number of green ears, in which no influence of weed control was observed. At densities of 70 thousand and 90 thousand plants per hectare, grain yield with two hoeings was not different from yield values obtained without weeding or in the treatment intercropped with gliricidia, respectively, indicating that increased corn seeding density as well as gliricidiamay help to control weeds.
Resumo:
There has been interest in reducing the use of herbicides for weed control in order to decrease environmental degradation problems. The objective of this study was to evaluate the effects of gliricidia planting density sown by broadcasting and intercopping on green ear and corn grain yield as well as on weed control. A randomized block design with split-plots and five replicates were adopted. Cultivars AG 1051, BM 2022, and BM 3061, assigned to plots, were submitted to the following treatments: no hoeing, two hoeings (at 20 and 40 days after sowing), and intercropped with gliricidia sown at densities of 10 and 20 seeds m-2. Thirty weed species occurred in the experiment area, with Cucumis anguria as the most frequent ones. Cultivar BM 2022 was the best for the total number of ears (TNE) and number (NMHE) and weight of marketable husked ears. Together with cultivar AG 1051, this cultivar had the highest total weight and marketable unhusked ear weight (MUEW). However, the cultivars did not differ with respect to grain yield (GY). The highest green ear and corn grain yield and weed control percentages were obtained with two hoeings; in MUEW, NMHE and GY, intercropping provided intermediate means in comparison with those obtained in hoed and non-hoed plots, indicating that gliricidia was partially beneficial to corn. Increased gliricidia seeding density heightened the benefits to corn (TNE and MUEW). The lack of hoeing produced the poorest green ear and grain yields.
Resumo:
Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis). The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosatedicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 g a.i. ha-1 for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a.e. ha-1. The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a.e. ha-1. Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a.e. ha-1 rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.
Resumo:
The objective of this study was to evaluate the effect of the ethanolic extract of Serjania lethalis leaves and stems on the diaspore germination and seedling growth of wild poinsettia (Euphorbia heterophylla) and barnyardgrass (Echinochloa crus-galli). The crude ethanolic extract was prepared from 100 g of dry plant material dissolved in 500 ml of ethanol. The extracts were solubilized in a buffer solution containing dimethyl sulfoxide (DMSO) at concentrations of 10.0, 7.5, 5.0 and 2.5 mg mL-1. The effect of these extracts was compared with herbicide oxyfluorfen in bioassays. The ethanolic extracts of S. lethalis leaves and stems inhibited the germination and seedling growth of barnyardgrass and wild poinsettia in a concentration-dependent manner. The reduction in the root length of E. heterophylla seedlings might be attributed to the reduced elongation of metaxylem cells. The phytotoxicity of the extracts ranged according to the receptor species, and for some variables, the inhibitory effect was similar, and even superior, to that of the commercial herbicide. Thus, S. lethalis extracts might be a promising alternative for sustainable weed management.
Resumo:
Gliricidia (Gliricidia sepium) seedlings are usually beneficial to corn crops when planted between corn rows. The objective of this work was to assess the effects of corn intercropped with gliricidia and "sabiá" (Mimosa caesalpiniifolia), a species native to the Brazilian northeastern region, on weed control and corn green ear and grain yields. The experiment was carried out at Estação Experimental da Universidade Federal Rural do Semi-Árido - UFERSA (Mossoró, State of Rio Grande do Norte, Brazil). The experimental design consisted of randomized complete blocks (multifactorial design) with five replications, arranged in split-plots. The plots consisted of corn cultivars AG1051 and BM 2022; subplot treatments (six) were no-hoeing, twice-hoeing (at 20 and 40 days after sowing) and intercropping with gliricidia and "sabiá", either directly sown or transplanted, simultaneously with corn sowing. The intercropped leguminous plants were spaced 0.40 m from each other, and directly seeded or transplanted (30-day-old seedlings) in between two 1 m-spaced corn rows. Twenty three weed species were identified during the experiment. Gliricidia seedlings were superior to "sabiá" seedlings with regard to plant height and survival rate. The highest corn green ear and grain yields were found for twice-hoed subplots, while the lowest yield was found for no-hoed or intercropped subplots. However, grain yield values in intercropped treatments did not differ from grain yield values in hoed plots. In addition, marketable husked green ear mean weights did not differ between twice-hoed subplots and subplots directly seeded with gliricidia and "sabiá". Such results indicated that corn benefited from the intercropping system, but intercropping with gliricidia and "sabiá" transplanted resulted in lower benefits than with the direct sowing of those species.
Resumo:
ABSTRACTWhite clover is tolerant to many herbicides, making difficult a chemical control of this species during soybean crop establishments. The objective of this research was to select herbicides applied postemergence to control white clover in soybean and know the effects of this control on soybean yield. Seven herbicides were assessed, applied postemergence, with or without sequential application of glyphosate, and two control treatments (no control and total control of white clover). Glyphosate (with two sequential applications), fomesafen (with a sequential application of glyphosate), chlorimuron-ethyl and lactofen have shown a satisfactory control of white clover (above 80%). The lower control efficiency has resulted in lower production of soybeans.