79 resultados para microprocessor-based control
Resumo:
Resolution 19 of the 54th World Health Assembly (WHA-54.19) urged member nations to promote preventive measures, ensure treatment and mobilize resources for control of schistosomiasis and soil-transmitted helminthiases (STH). The minimum target is to attend 75% of all school-age children at risk by year 2010. The Brazilian Ministry of Health (MoH) recommends biennial surveys of whole communities and treatment of the positives through the Schistosomiasis Control Program within the Unified Health System (PCE-SUS). However, by 2004 the PCE-SUS had covered only 8.4% of the 1.2 million residents in the Rainforest Zone of Pernambuco (ZMP). Six of the 43 municipalities still remained unattended. Only three of the municipalities already surveyed reached coverage of 25% or more. At least 154 thousand children in the 7-14 years old range have to be examined (and treated if positive) within the next five years to attend the minimum target of the WHA 54.19 for the ZMP. To make this target feasible, it is suggested that from 2006 to 2010 the PCE-SUS actions should be complemented with school-based diagnosis and treatment, involving health and educational organs as well as community associations to include both children in schools and non-enrolled school-age children.
Resumo:
Malaria emerges from a disequilibrium of the system 'human-plasmodium-mosquito' (HPM). If the equilibrium is maintained, malaria does not ensue and the result is asymptomatic plasmodium infection. The relationships among the components of the system involve coadaptive linkages that lead to equilibrium. A vast body of evidence supports this assumption, including the strategies involved in the relationships between plasmodium and human and mosquito immune systems, and the emergence of resistance of plasmodia to antimalarial drugs and of mosquitoes to insecticides. Coadaptive strategies for malaria control are based on the following principles: (1) the system HPM is composed of three highly complex and dynamic components, whose interplay involves coadaptive linkages that tend to maintain the equilibrium of the system; (2) human and mosquito immune systems play a central role in the coadaptive interplay with plasmodium, and hence, in the mainten-ance of the system's equilibrium; the under- or overfunction of human immune system may result in malaria and influence its severity; (3) coadaptation depends on genetic and epigenetic phenomena occurring at the interfaces of the components of the system, and may involve exchange of infectrons (genes or gene fragments) between the partners; (4) plasmodia and mosquitoes have been submitted to selective pressures, leading to adaptation, for an extremely long while and are, therefore, endowed with the capacity to circumvent both natural (immunity) and artificial (drugs, insecticides, vaccines) measures aiming at destroying them; (5) since malaria represents disequilibrium of the system HPM, its control should aim at maintaining or restoring this equilibrium; (6) the disequilibrium of integrated systems involves the disequilibrium of their components, therefore the maintenance or restoration of the system's equilibrium depend on the adoption of integrated and coordinated measures acting on all components, that means, panadaptive strategies. Coadaptive strategies for malaria control should consider that: (1) host immune response has to be induced, since without it, no coadaptation is attained; (2) the immune response has to be sustained and efficient enough to avoid plasmodium overgrowth; (3) the immune response should not destroy all parasites; (4) the immune response has to be well controlled in order to not harm the host. These conditions are mostly influenced by antimalarial drugs, and should also be taken into account for the development of coadaptive malaria vaccines.
Resumo:
Anopheles darlingi is the most important Brazilian malaria vector, with a widespread distribution in the Amazon forest. Effective strategies for vector control could be better developed through knowledge of its genetic structure and gene flow among populations, to assess the vector diversity and competence in transmitting Plasmodium. The aim of this study was to assess the genetic diversity of An. darlingi collected at four locations in Porto Velho, by sequencing a fragment of the ND4 mitochondrial gene. From 218 individual mosquitoes, we obtained 20 different haplotypes with a diversity index of 0.756, equivalent to that found in other neotropical anophelines. The analysis did not demonstrate significant population structure. However, haplotype diversity within some populations seems to be over-represented, suggesting the presence of sub-populations, but the presence of highly represented haplotypes complicates this analysis. There was no clear correlation among genetic and geographical distance and there were differences in relation to seasonality, which is important for malarial epidemiology.
Resumo:
A new approach to dengue vector surveillance based on permanent egg-collection using a modified ovitrap and Bacillus thuringiensis israelensis(Bti) was evaluated in different urban landscapes in Recife, Northeast Brazil. From April 2004 to April 2005, 13 egg-collection cycles of four weeks were carried out. Geo-referenced ovitraps containing grass infusion, Bti and three paddles were placed at fixed sampling stations distributed over five selected sites. Continuous egg-collections yielded more than four million eggs laid into 464 sentinel-ovitraps over one year. The overall positive ovitrap index was 98.5% (over 5,616 trap observations). The egg density index ranged from 100 to 2,500 eggs per trap-cycle, indicating a wide spread and high density of Aedes aegypti (Diptera: Culicidae) breeding populations in all sites. Fluctuations in population density over time were observed, particularly a marked increase from January on, or later, according to site. Massive egg-collection carried out at one of the sites prevented such a population outbreak. At intra-site level, egg counts made it possible to identify spots where the vector population is consistently concentrated over the time, pinpointing areas that should be considered high priority for control activities. The results indicate that these could be promising strategies for detecting and preventing Ae. aegypti population outbreaks.
Resumo:
The only long-term and cost-effective solution to the human immunodeficiency virus (HIV) epidemic in the developing world is a vaccine that prevents individuals from becoming infected or, once infected, from passing the virus on to others. There is currently little hope for an AIDS vaccine. Conventional attempts to induce protective antibody and CD8+ lymphocyte responses against HIV and simian immunodeficiency virus (SIV) have failed. The enormous diversity of the virus has only recently been appreciated by vaccinologists, and our assays to determine CD8+ lymphocyte antiviral efficacy are inadequate. The central hypothesis of a CTL-based vaccine is that particularly effective CD8+ lymphocytes directed against at least five epitopes that are derived from regions under functional and structural constraints will control replication of pathogenic SIV. This would be somewhat analogous to control of virus replication by triple drug therapy or neutralizing antibodies.
Resumo:
Living in close association with a vertebrate host and feeding on its blood requires different types of adaptations, including behavioural adjustements. Triatomines exhibit particular traits associated with the exploitation of their habitat and food sources and these traits have been the subject of intense analysis. Many aspects of triatomine behaviour have been relatively well characterised and some attempts to exploit the behaviours have been undertaken. Baited traps based on host-associated cues, artificial refuges and light-traps are some of the tools used. Here we discuss how our knowledge of the biology of Chagas disease vectors may help us sample and detect these insects and even increase the efficiency of control measures.
Resumo:
Insect-borne diseases are responsible for severe mortality and morbidity worldwide. As control of insect vector populations relies primarily on the use of insecticides, the emergence of insecticide resistance as well to unintended consequences of insecticide use pose significant challenges to their continued application. Novel approaches to reduce pathogen transmission by disease vectors are been attempted, including transmission-blocking vaccines (TBVs) thought to be a feasible strategy to reduce pathogen burden in endemic areas. TBVs aim at preventing the transmission of pathogens from infected to uninfected vertebrate host by targeting molecule(s) expressed on the surface of pathogens during their developmental phase within the insect vector or by targeting molecules expressed by the vectors. For pathogen-based molecules, the majority of the TBV candidates selected as well as most of the data available regarding the effectiveness of this approach come from studies using malaria parasites. However, TBV candidates also have been identified from midgut tissues of mosquitoes and sand flies. In spite of the successes achieved in the potential application of TBVs against insect-borne diseases, many significant barriers remain. In this review, many of the TBV strategies against insect-borne pathogens and their respective ramification with regards to the immune response of the vertebrate host are discussed.
Resumo:
The Schistosomiasis Control Program (PCE) was implemented in Minas Gerais (MG) in 1984. In 1999, the state started the investigation and control of schistosomiasis in 470 municipalities. The aim of the present paper is to report the evolution of this Program from 1984-2007. The program included a coproscopic survey carried out in the municipalities of known endemic areas using a quantitative method. Positives were treated with praziquantel and given a program of health education. The information for this study was obtained from data collected and stored by the Health State Department. From 2003-2007, 2,643,564 stool examinations resulted in 141,284 positive tests for Schistosoma mansoni (5.3%). In the first evaluation after treatment, a decrease in the number of municipalities with prevalence over 10% was documented. In one village, selected for a more detailed evaluation, the percentage of positive tests decreased from 14.9% in the baseline survey to 5.3% after treatment. A reference centre for patients with severe schistosomiasis was created in Belo Horizonte, MG. Based on our findings, we believe that the implementation of PCE in MG is on the right path and in due time these new initiatives will provide desirable results.
Resumo:
Leprosy's progression and its maintained endemic status, despite the availability of effective treatments, are not fully understood and recent studies have highlighted the possibility of involved Mycobacterium leprae ambient reservoirs. Wild armadillos can carry leprosy and, because their meat is eaten by humans, development of the disease among armadillo meat consumers has been investigated. This study evaluated the frequency of armadillo meat intake among leprosy patients as well as age and gender matched controls with other skin diseases from a dermatological unit. Armadillo meat consumption among both groups was adjusted by demographic and socioeconomic covariates based on a conditional multiple logistic regression model. One hundred twenty-one cases and 242 controls were evaluated; they differed in socioeconomic variables such as family income, hometown population and access to treated water. The multivariate analysis did not show an association between the intake of armadillo meat and leprosy (odds ratio = 1.07; CI 95% 0.56-2.04), even when only cases with no known contacts were analyzed. We conclude that leprosy is not associated with the intake of armadillo meat in these patients.
Resumo:
We assessed the risk classification of dengue fever based on the capture of Aedes aegypti adults using MosquiTRAP, a type of sticky trap, in comparison with traditional larval infestation indices. A total of 27 MosquiTRAPs were installed, with one trap per block, and were inspected weekly between November 2008-February 2009. Infestation baseline data were obtained from a survey conducted prior to trap installation. The index generated by MosquiTRAP and house index (HI) classified the area "in alert situation". The set for risk of dengue occurrence proposed by the use of MosquiTRAP classify areas in the same way of the traditional HI.
Resumo:
Vaccination is the method of choice for the prevention of influenza infection. However, the quantity of the antigen available, especially in the case of pandemics, often fails to meet the global demand. However, improved adjuvants can overcome this problem. Preliminary results obtained in this study revealed that one year after a single subcutaneous immunisation with influenza A H3N2 virus in an oil-based carrier, VaxcineTM, outbreed mice produced a high immunoglobulin G response that lasted for up to one year and exhibited less variation in titre compared with the response of the control group treated with alum. The haemagglutination-inhibition titres induced by VaxcineTM were also higher than those generated by alum. These data indicate that VaxcineTM is a good adjuvant candidate for seasonal influenza vaccines.
Resumo:
Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito through insecticides and bed nets. However, current vector control methods are often not sustainable for long periods so alternative methods are needed. A novel biocontrol approach for mosquito-borne diseases has recently been proposed, it uses maternally inherited endosymbiotic Wolbachia bacteria transinfected into mosquitoes in order to interfere with pathogen transmission. Transinfected Wolbachia strains in Aedes aegypti mosquitoes, the primary vector of dengue fever, directly inhibit pathogen replication, including Plasmodium gallinaceum, and also affect mosquito reproduction to allow Wolbachia to spread through mosquito populations. In addition, transient Wolbachia infections in Anopheles gambiae significantly reduce Plasmodium levels. Here we review the prospects of using a Wolbachia-based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes.
Resumo:
In Guatemala, the Ministry of Health (MoH) began a vector control project with Japanese cooperation in 2000 to reduce the risk of Chagas disease infection. Rhodnius prolixus is one of the principal vectors and is targeted for elimination. The control method consisted of extensive residual insecticide spraying campaigns, followed by community-based surveillance with selective respraying. Interventions in nine endemic departments identified 317 villages with R. prolixus of 4,417 villages surveyed. Two cycles of residual insecticide spraying covered over 98% of the houses in the identified villages. Fourteen villages reinfestated were all resprayed. Between 2000-2003 and 2008, the number of infested villages decreased from 317 to two and the house infestation rate reduced from 0.86% to 0.0036%. Seroprevalence rates in 2004-2005, when compared with an earlier study in 1998, showed a significant decline from 5.3% to 1.3% among schoolchildren in endemic areas. The total operational cost was US$ 921,815, where the cost ratio between preparatory, attack and surveillance phases was approximately 2:12:1. In 2008, Guatemala was certified for interruption of Chagas disease transmission by R. prolixus. What facilitated the process was existing knowledge in vector control and notable commitment by the MoH, as well as political, managerial and technical support by external stakeholders.
Resumo:
In this study, we designed an experiment to predict a potential immunodominant T-cell epitope and evaluate the protectivity of this antigen in immunised mice. The T-cell epitopes of the candidate proteins (EgGST, EgA31, Eg95, EgTrp and P14-3-3) were detected using available web-based databases. The synthesised DNA was subcloned into the pET41a+ vector and expressed in Escherichia coli as a fusion to glutathione-S-transferase protein (GST). The resulting chimeric protein was then purified by affinity chromatography. Twenty female C57BL/6 mice were immunised with the antigen emulsified in Freund's adjuvant. Mouse splenocytes were then cultured in Dulbecco's Modified Eagle's Medium in the presence of the antigen. The production of interferon-γ was significantly higher in the immunised mice than in the control mice (> 1,300 pg/mL), but interleukin (IL)-10 and IL-4 production was not statistically different between the two groups. In a challenge study in which mice were infected with 500 live protoscolices, a high protectivity level (99.6%) was demonstrated in immunised BALB/C mice compared to the findings in the control groups [GST and adjuvant (Adj) ]. These results demonstrate the successful application of the predicted T-cell epitope in designing a vaccine against Echinococcus granulosus in a mouse model.
Resumo:
Anophelines harbour a diverse microbial consortium that may represent an extended gene pool for the host. The proposed effects of the insect microbiota span physiological, metabolic and immune processes. Here we synthesise how current metagenomic tools combined with classical culture-dependent techniques provide new insights in the elucidation of the role of the Anopheles-associated microbiota. Many proposed malaria control strategies have been based upon the immunomodulating effects that the bacterial components of the microbiota appear to exert and their ability to express anti-Plasmodium peptides. The number of identified bacterial taxa has increased in the current “omics” era and the available data are mostly scattered or in “tables” that are difficult to exploit. Published microbiota reports for multiple anopheline species were compiled in an Excel® spreadsheet. We then filtered the microbiota data using a continent-oriented criterion and generated a visual correlation showing the exclusive and shared bacterial genera among four continents. The data suggested the existence of a core group of bacteria associated in a stable manner with their anopheline hosts. However, the lack of data from Neotropical vectors may reduce the possibility of defining the core microbiota and understanding the mosquito-bacteria interactive consortium.