81 resultados para microgravity fluid physics
Resumo:
The assessment of fluid volume in neonates by a noninvasive, inexpensive, and fast method can contribute significantly to increase the quality of neonatal care. The objective of the present study was to calibrate an acquisition system and software to estimate the bioelectrical impedance parameters obtained by a method of bioelectrical impedance spectroscopy based on step response and to develop specific equations for the neonatal population to determine body fluid compartments. Bioelectric impedance measurements were performed by a laboratory homemade instrument. The volumes were estimated in a clinical study on 30 full-term neonates at four different times during the first month of life. During the first 24 hours of life the total body water, extracellular water and intracellular water were 2.09 ± 0.25, 1.20 ± 0.19, and 0.90 ± 0.25 liters, respectively. By the 48th hour they were 1.87 ± 0.27, 1.08 ± 0.17, and 0.79 ± 0.21 liters, respectively. On the 10th day they were 2.02 ± 0.25, 1.29 ± 0.21, and 0.72 ± 0.14 liters, respectively, and after 1 month they were 2.34 ± 0.27, 1.62 ± 0.20, and 0.72 ± 0.13 liters, respectively. The behavior of the estimated volume was correlated with neonatal body weight changes, leading to a better interpretation of such changes. In conclusion, this study indicates the feasibility of bioelectrical impedance spectroscopy as a method to help fluid administration in intensive care neonatal units, and also contribute to the development of new equations to estimate neonatal body fluid contents.
Resumo:
The objective of the present study was to examine the association between follicular fluid (FF) steroid concentration and oocyte maturity and fertilization rates. Seventeen infertile patients were submitted to ovulation induction with urinary human follicle-stimulating hormone, human menopausal gonadotropin and human chorionic gonadotropin (hCG). A total of 107 follicles were aspirated after hCG administration, the oocytes were analyzed for maturity and 81 of them were incubated and inseminated in vitro. Progesterone, estradiol (E2), estrone, androstenedione, and testosterone were measured in the FF. E2 and testosterone levels were significantly higher in FF containing immature oocytes (median = 618.2 and 16 ng/ml, respectively) than in FF containing mature oocytes (median = 368 and 5.7 ng/ml, respectively; P < 0.05). Progesterone, androstenedione and estrone levels were not significantly different between mature and immature oocytes. The application of the receiver-operating characteristic curve statistical approach to determine the best cut-off point for the discrimination between mature and immature oocytes indicated levels of 505.8 ng/ml for E2 (81.0% sensitivity and 81.8% specificity) and of 10.4 ng/ml for testosterone (90.9% sensitivity and 82.4% specificity). Follicular diameter was associated negatively with E2 and testosterone levels in FF. There was a significant increase in progesterone/testosterone, progesterone/E2 and E2/testosterone ratios in FF containing mature oocytes, suggesting a reduction in conversion of C21 to C19, but not in aromatase activity. The overall fertility rate was 61% but there was no correlation between the steroid levels or their ratios and the fertilization rates. E2 and testosterone levels in FF may be used as a predictive parameter of oocyte maturity, but not for the in vitro fertilization rate.
Resumo:
The goal of the present study was to determine concentrations of E-selectin in both cerebrospinal fluid (CSF) and serum of patients with aneurysmal subarachnoid hemorrhage (SAH) and to evaluate the correlation between the clinical parameters and E-selectin levels. Both CSF and serum samples obtained from 12 patients with aneurysmal SAH and 8 patients with hydrocephalus (control group) without any other known central nervous system disease were assayed for E-selectin by quantitative enzyme-linked immunosorbent assay and the results were compared between the two groups. Mean levels of soluble forms of E-selectin within the first 3 days and on the 5th and 7th days of SAH were 4.0 ± 7.9, 2.8 ± 5.2, and 3.1 ± 4.9 ng/ml in the patient's CSF, and 33.7 ± 9.2, 35.1 ± 7.0, and 35.2 ± 8.7 ng/ml in serum, respectively. In contrast, mean E-selectin levels were 0.1 ± 0.2 ng/ml in CSF and 8.7 ± 5.0 ng/ml in serum of control patients. The difference between groups was statistically significant regarding both CSF and serum E-selectin levels (P < 0.05). Thus, we have demonstrated a marked increase of E-selectin concentration in both CSF and serum of patients with aneurysmal SAH compared with control and suggest that blocking the interaction between E-selectin and vascular endothelium may have a beneficial effect on vasospasms.
Resumo:
The clinical manifestations of neurocysticercosis (NC) are varied and depend on the number and location of cysts, as well as on the host immune response. Symptoms usually occur in NC when cysticerci enter a degenerative course associated with an inflammatory response. The expression of brain damage markers may be expected to increase during this phase. S100B is a calcium-binding protein produced and released predominantly by astrocytes that has been used as a marker of reactive gliosis and astrocytic death in many pathological conditions. The aim of the present study was to investigate the levels of S100B in patients in different phases of NC evolution. Cerebrospinal fluid and serum S100B concentrations were measured in 25 patients with NC: 14 patients with degenerative cysts (D), 8 patients with viable cysts (V) and 3 patients with inactive cysts. All NC patients, except 1, had five or less cysts. In most of them, symptoms had been present for at least 1 month before sample collection. Samples from 8 normal controls (C) were also assayed. The albumin quotient was used to estimate the blood-brain barrier permeability. There were no significant differences in serum (P = 0.5) or cerebrospinal fluid (P = 0.91) S100B levels among the V, D, and C groups. These findings suggest that parenchymal changes associated with a relatively small number of degenerating cysts probably have a negligible impact on glial tissue.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the human central nervous system. Although its etiology is unknown, the accumulation and activation of mononuclear cells in the central nervous system are crucial to its pathogenesis. Chemokines have been proposed to play a major role in the recruitment and activation of leukocytes in inflammatory sites. They are divided into subfamilies on the basis of the location of conserved cysteine residues. We determined the levels of some CC and CXC chemokines in the cerebrospinal fluid (CSF) of 23 relapsing-remitting MS patients under interferon-ß-1a therapy and 16 control subjects using ELISA. MS patients were categorized as having active or stable disease. CXCL10 was significantly increased in the CSF of active MS patients (mean ± SEM, 369.5 ± 69.3 pg/mL) when compared with controls (178.5 ± 29.1 pg/mL, P < 0.05). CSF levels of CCL2 were significantly lower in active MS (144.7 ± 14.4 pg/mL) than in controls (237.1 ± 16.4 pg/mL, P < 0.01). There was no difference in the concentration of CCL2 and CXCL10 between patients with stable MS and controls. CCL5 was not detectable in the CSF of most patients or controls. The qualitative and quantitative differences of chemokines in CSF during relapses of MS suggest that they may be useful as a marker of disease activity and of the mechanisms involved in the pathogenesis of the disease.
Resumo:
Our objective was to measure maternal plasma and amniotic fluid amino acid concentrations in pregnant women diagnosed as having fetuses with gastroschisis in the second trimester of pregnancy. Twenty-one pregnant women who had fetuses with gastroschisis detected by ultrasonography (gastroschisis group) in the second trimester and 32 women who had abnormal triple screenings indicating an increased risk for Down syndrome but had healthy fetuses (control group) were enrolled in the study. Amniotic fluid was obtained by amniocentesis, and maternal plasma samples were taken simultaneously. The chromosomal analysis of the study and control groups was normal. Levels of free amino acids and non-essential amino acids were measured in plasma and amniotic fluid samples using EZ:fast kits (EZ:fast GC/FID free (physiological) amino acid kit) by gas chromatography (Focus GC AI 3000 Thermo Finnigan analyzer). The mean levels of essential amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine) and non-essential amino acids (alanine, glycine, proline, and tyrosine) in amniotic fluid were found to be significantly higher in fetuses with gastroschisis than in the control group (P < 0.05). A significant positive correlation between maternal plasma and amniotic fluid concentrations of essential and nonessential amino acids was found only in the gastroschisis group (P < 0.05). The detection of significantly higher amino acid concentrations in the amniotic fluid of fetuses with a gastroschisis defect than in healthy fetuses suggests the occurrence of amino acid malabsorption or of amino acid leakage from the fetus into amniotic fluid.
Resumo:
The balance of body fluids is critical to health and the development of diseases. Although quite a few review papers have shown that several mechanisms, including hormonal and behavioral regulation, play an important role in body fluid homeostasis in adults, there is limited information on the development of regulatory mechanisms for fetal body fluid balance. Hormonal, renal, and behavioral control of body fluids function to some extent in utero. Hormonal mechanisms including the renin-angiotensin system, aldosterone, and vasopressin are involved in modifying fetal renal excretion, reabsorption of sodium and water, and regulation of vascular volume. In utero behavioral changes, such as fetal swallowing, have been suggested to be early functional development in response to dipsogens. Since diseases, such as hypertension, can be traced to fetal origin, it is important to understand the development of fetal regulatory mechanisms for body fluid homeostasis in this early stage of life. This review focuses on fetal hormonal, behavioral, and renal development related to regulation of body fluids in utero.
Resumo:
The type of fluid used during resuscitation may have an important impact on tissue edema. We evaluated the impact of two different regimens of fluid resuscitation on hemodynamics and on lung and intestinal edema during splanchnic hypoperfusion in rabbits. The study included 16 female New Zealand rabbits (2.9 to 3.3 kg body weight, aged 8 to 12 months) with splanchnic ischemia induced by ligation of the superior mesenteric artery. The animals were randomized into two experimental groups: group I (N = 9) received 12 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 6% hydroxyethyl starch solution; group II (N = 7) received 36 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 0.9% saline. A segment from the ileum was isolated to be perfused. A tonometric catheter was placed in a second gut segment. Superior mesenteric artery (Q SMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. After 4 h of fluid resuscitation, tissue specimens were immediately removed for estimations of gut and lung edema. There were no differences in global and regional perfusion variables, lung wet-to-dry weight ratios and oxygenation indices between groups. Gut wet-to-dry weight ratio was significantly lower in the crystalloid/colloid-treated group (4.9 ± 1.5) than in the crystalloid-treated group (7.3 ± 2.4) (P < 0.05). In this model of intestinal ischemia, fluid resuscitation with crystalloids caused more gut edema than a combination of crystalloids and colloids.
Resumo:
The involvement of the hypothalamic-pituitary-adrenal axis in the control of body fluid homeostasis has been extensively investigated in the past few years. In the present study, we reviewed the recent results obtained using different approaches to investigate the effects of glucocorticoids on the mechanisms of oxytocin and vasopressin synthesis and secretion in response to acute and chronic plasma volume and osmolality changes. The data presented here suggest that glucocorticoids are not only involved in the mechanisms underlying the fast release but also in the transcriptional events that lead to decreased synthesis and secretion of these neuropeptides, particularly oxytocin, under diverse experimental conditions of altered fluid volume and tonicity. The endocannabinoid system, through its effects on glutamatergic neurotransmission within the hypothalamus and the nuclear factor κB-mediated transcriptional activity, seems to be also involved in the specific mechanisms by which glucocorticoids exert their central effects on neurohypophyseal hormone synthesis and secretion.
Resumo:
The objective of this study was to determine the effect of maternal hydration with oral isotonic solution and water on the amniotic fluid (AF) index of women with normohydramnios. Women with a normal AF index and gestational age between 33 and 36 weeks without maternal complications were randomized into three groups [isotonic solution (Gatorade®), water, control]. The isotonic solution and water groups were instructed to drink 1.5 L of the respective solution and the control group was instructed to drink 200 mL water over a period of 2 to 4 h. AF index was measured before and after hydration by Doppler ultrasonography. The investigator performing the AF index measurement was blind to the subject’s group. Ninety-nine women completed the study without any adverse maternal effects. The median increase in AF index after hydration was significantly greater for the isotonic solution and water groups than for the control group. There was no significant difference between the isotonic solution and water groups. Hydration with isotonic solution and water caused a 10-fold (95%CI: 2.09-49.89) and 6-fold (95%CI: 1.16-30.95) increase in the chance of a 20% increase of AF index, respectively. Maternal hydration with isotonic solution or water increased the AF index in women with normohydramnios.
Resumo:
In a prospective case-control study, we compared the amniotic fluid amino acid levels in non-immune hydrops fetalis (NIHF) and normal fetuses. Eighty fetuses underwent amniocentesis for different reasons at the prenatal diagnosis unit of the Department of Obstetrics and Gynecology, Faculty of Medicine, Dicle University. Forty of these fetuses were diagnosed with NIHF. The study included 40 women each in the NIHF (mean age: 27.69 ± 4.56 years) and control (27.52 ± 5.49 years) groups, who had abnormal double- or triple-screening test values with normal fetuses with gestational ages of 23.26 ± 1.98 and 23.68 ± 1.49 weeks at the time of sample collection, respectively. Amniotic fluid amino acid concentrations (intra-assay variation: 2.26-7.85%; interassay variation: 3.45-8.22%) were measured using EZ:faast kits (EZ:faast GC/FID free (physiological) amino acid kit; Phenomenex, USA) by gas chromatography. The standard for quantitation was a mixture of free amino acids from Phenomenex. The levels of 21 amino acids were measured. The mean phosphoserine and serine levels were significantly lower in the NIHF group, while the taurine, α-aminoadipic acid (aaa), glycine, cysteine, NH4, and arginine (Arg) levels were significantly higher compared to control. Significant risk variables for the NIHF group and odds coefficients were obtained using a binary logistic regression method. The respective odds ratios and 95% confidence intervals for the risk variables phosphoserine, taurine, aaa, Arg, and NH4 were 3.31 (1.84-5.97), 2.45 (1.56-3.86), 1.78 (1.18-2.68), 2.18 (1.56-3.04), and 2.41 (1.66-3.49), respectively. The significant difference between NIHF and control fetuses suggests that the amniotic fluid levels of some amino acids may be useful for the diagnosis of NIHF.
Resumo:
The aim of the present study was to determine the effect of volume and composition of fluid replacement on the physical performance of male football referees. Ten referees were evaluated during three official matches. In one match the participants were asked to consume mineral water ad libitum, and in the others they consumed a pre-determined volume of mineral water or a carbohydrate electrolyte solution (6.4% carbohydrate and 22 mM Na+) equivalent to 1% of their baseline body mass (half before the match and half during the interval). Total water loss, sweat rate and match physiological performance were measured. When rehydrated ad libitum (pre-match and at half time) participants lost 1.97 ± 0.18% of their pre-match body mass (2.14 ± 0.19 L). This parameter was significantly reduced when they consumed a pre-determined volume of fluid. Sweat rate was significantly reduced when the referees ingested a pre-determined volume of a carbohydrate electrolyte solution, 0.72 ± 0.12 vs 1.16 ± 0.11 L/h ad libitum. The high percentage (74.1%) of movements at low speed (walking, jogging) observed when they ingested fluid ad libitum was significantly reduced to 71% with mineral water and to 69.9% with carbohydrate solution. An increase in percent movement expended in backward running was observed when they consumed a pre-determined volume of carbohydrate solution, 7.7 ± 0.5 vs 5.5 ± 0.5% ad libitum. The improved hydration status achieved with the carbohydrate electrolyte solution reduced the length of time spent in activities at low-speed movements and increased the time spent in activities demanding high-energy expenditure.
Resumo:
To explore whether an environment of weightlessness will cause damage to the reproductive system of animals, we used the tail-suspension model to simulate microgravity, and investigated the effect of microgravity on the tissue structure and function of the testis in sexually mature male rats. Forty-eight male Wistar rats weighing 200-250 g were randomly assigned to three groups (N = 16 each): control, tail traction, and tail suspension. After the rats were suspended for 7 or 14 days, morphological changes of testis were evaluated by histological and electron microscopic methods. The expression of HSP70, bax/bcl-2 and AR (androgen receptor) in testis was measured by immunohistochemistry. Obvious pathological lesions were present in the testis after the rats were suspended for 7 or 14 days. We detected overexpression of HSP70 and an increase of apoptotic cells, which may have contributed to the injury to the testis. The expression of AR, as an effector molecule in the testis, was significantly decreased in the suspended groups compared to control (P < 0.01). We also observed that, with a longer time of suspension, the aforementioned pathological damage became more serious and some pathological injury to the testis was irreversible. The results demonstrated that a short- or medium-term microgravity environment could lead to severe irreversible damage to the structure of rat testis.
Resumo:
The effects of Ringer lactate, 6% hydroxyethyl starch (HES) (130/0.4) or 4% succinylated gelatin solutions on perioperative coagulability were measured by thromboelastography (TEG). Seventy-five patients (ASA I-III) who were to undergo major orthopedic procedures performed under epidural anesthesia were included in the study. Patients were randomly divided into three groups of 25 each for the administration of maintenance fluids: group RL (Ringer lactate), group HES (6% HES 130/0.4), and group JEL (4% gelofusine solution). Blood samples were obtained during the perioperative period before epidural anesthesia (t1, baseline), at the end of the surgery (t2), and 24 h after the operation (t3). TEG data, reaction time (R), coagulation time (K), angle value (α), and maximum amplitude (MA) were recorded. TEG parameters changed from normal values in all patients. In group RL, R and K times decreased compared to perioperative values while the α angle and MA increased (P < 0.05). In group HES, R and K times increased, however, the α angle and MA decreased (P < 0.05). In group JEL, R time increased (P < 0.05), but K time, α angle and MA did not change significantly. In the present study, RL, 6% HES (130/0.4) and 4% JEL solutions caused changes in the coagulation system of all patients as measured by TEG, but these changes remained within normal limits.
Resumo:
Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.