68 resultados para ibuprofenate-sensitive electrode
Resumo:
Patients with metabolic syndrome are at high-risk for development of atherosclerosis and cardiovascular events. The objective of this study was to examine the major determinants of coronary disease severity, including those coronary risk factors associated with metabolic syndrome, during the early period after an acute coronary episode. We tested the hypothesis that inflammatory markers, especially highly sensitive C-reactive protein (hsCRP), are related to coronary atherosclerosis, in addition to traditional coronary risk factors. Subjects of both genders aged 30 to 75 years (N = 116) were prospectively included if they had suffered a recent acute coronary syndrome (acute myocardial infarction or unstable angina pectoris requiring hospitalization) and if they had metabolic syndrome diagnosed according to the National Cholesterol Education Program/Adult Treatment Panel III. Patients were submitted to a coronary angiography and the burden of atherosclerosis was estimated by the Gensini score. The severity of coronary disease was correlated (Spearman’s or Pearson’s coefficient) with gender (r = 0.291, P = 0.008), age (r = 0.218, P = 0.048), hsCRP (r = 0.256, P = 0.020), ApoB/ApoA ratio (r = 0.233, P = 0.041), and carotid intima-media thickness (r = 0.236, P = 0.041). After multiple linear regression, only male gender (P = 0.046) and hsCRP (P = 0.012) remained independently associated with the Gensini score. In this high-risk population, male gender and high levels of hsCRP, two variables that can be easily obtained, were associated with more extensive coronary disease, identifying patients with the highest potential of developing new coronary events.
Resumo:
Pulmonary remodeling is an important feature of asthma physiopathology that can contribute to irreversible changes in lung function. Although neurokinins influence lung inflammation, their exact role in the extracellular matrix (ECM) remodeling remains to be determined. Our objective was to investigate whether inactivation of capsaicin-sensitive nerves modulates pulmonary ECM remodeling in animals with chronic lung inflammation. After 14 days of capsaicin (50 mg/kg, sc) or vehicle administration, male Hartley guinea pigs weighing 250-300 g were submitted to seven inhalations of increasing doses of ovalbumin (1, 2.5, and 5 mg/mL) or saline for 4 weeks. Seventy-two hours after the seventh inhalation, animals were anesthetized and mechanically ventilated and the lung mechanics and collagen and elastic fiber content in the airways, vessels and lung parenchyma were evaluated. Ovalbumin-exposed animals presented increasing collagen and elastic fiber content, respectively, in the airways (9.2 ± 0.9; 13.8 ± 1.2), vessels (19.8 ± 0.8; 13.4 ± 0.5) and lung parenchyma (9.2 ± 0.9; 13.8 ± 1.2) compared to control (P < 0.05). Capsaicin treatment reduced collagen and elastic fibers, respectively, in airways (1.7 ± 1.1; 7.9 ± 1.5), vessels (2.8 ± 1.1; 4.4 ± 1.1) and lung tissue (2.8 ± 1.1; 4.4 ± 1.1) of ovalbumin-exposed animals (P < 0.05). These findings were positively correlated with lung mechanical responses to antigenic challenge (P < 0.05). In conclusion, inactivation of capsaicin-sensitive nerve fibers reduces pulmonary remodeling, particularly collagen and elastic fibers, which contributes to the attenuation of pulmonary functional parameters.
Resumo:
The aim of this study was to determine the correlation between total nitrite/nitrate concentrations (NOx) and the kinetic parameters of monoamine oxidase enzymes (MAO-A and MAO-B) and semicarbazide-sensitive amine oxidase (SSAO) in human mesenteric arteries. Arteries were from non-diabetic and type 2 diabetic patients with sigmoid or rectum carcinoma for whom surgery was the first option and who were not exposed to neo-adjuvant therapy. Segments of human inferior mesenteric arteries from non-diabetic (61.1 ± 8.9 years old, 7 males and 5 females, N = 12) and type 2 diabetic patients (65.8 ± 6.2 years old, 8 males and 4 females, N = 12) were used to determine NOx concentrations and the kinetic parameters of MAO-A, MAO-B and SSAO by the Griess reaction and by radiochemical assay, respectively. The NOx concentrations in arteries from diabetic patients did not differ significantly from those of the non-diabetic group (10.28 ± 4.61 vs 10.71 ± 4.32 nmol/mg protein, respectively). In the non-diabetic group, there was a positive correlation between NOx concentrations and MAO-B parameters: Km (r = 0.612, P = 0.034) and Vmax (r = 0.593, P = 0.042), and a negative correlation with the SSAO parameters: Km (r = -0.625, P = 0.029) and Vmax (r = -0.754, P = 0.005). However, in the diabetic group no correlation was found between NOx concentrations and the three kinetic parameters of the enzymes. These results suggest an important function of sympathetic nerves and vascular NOx concentrations in arteries of non-diabetic patients. Thus, these results confirm the importance of a balance between oxidants and antioxidants in the maintenance of vascular homeostasis to prevent oxidative stress.
Resumo:
We compared two electroretinography (ERG) electrodes in dogs using ERG standards of the International Society for Clinical Electrophysiology of Vision (ISCEV). Ten healthy Yorkshire terrier dogs (mean age, 2.80 ± 1.42 years; 6 females) weighing 5.20 ± 1.56 kg were evaluated using an ERG system for veterinary use. Dark- and light-adapted ERG responses were recorded using an ERG-Jet electrode and a fiber electrode prototype. The examinations were performed during 2 visits, 3 weeks apart. Both electrodes (ERG-Jet or fiber prototype) were used on each animal and the first eye to be recorded (OD × OS) was selected randomly. Three weeks later the examination was repeated on the same animal switching the type of electrode to be used that day and the first eye to be examined. The magnitude and waveform quality obtained with the two electrode types were similar for all ERG responses. ERG amplitudes and implicit times obtained from dogs using the fiber electrode prototype were comparable to those obtained with the ERG-Jet electrode for rod, maximal rod-cone summed, cone, and 30-Hz flicker responses. The fiber electrode prototype is a low-cost device, available as an alternative instrument for clinical veterinary ERG recording for retinal function assessment.
Resumo:
This study determined whether clinical salt-sensitive hypertension (cSSHT) results from the interaction between partial arterial baroreceptor impairment and a high-sodium (HNa) diet. In three series (S-I, S-II, S-III), mean arterial pressure (MAP) of conscious male Wistar ChR003 rats was measured once before (pdMAP) and twice after either sham (SHM) or bilateral aortic denervation (AD), following 7 days on a low-sodium (LNa) diet (LNaMAP) and then 21 days on a HNa diet (HNaMAP). The roles of plasma nitric oxide bioavailability (pNOB), renal medullary superoxide anion production (RMSAP), and mRNA expression of NAD(P)H oxidase and superoxide dismutase were also assessed. In SHM (n=11) and AD (n=15) groups of S-I, LNaMAP-pdMAP was 10.5±2.1 vs 23±2.1 mmHg (P<0.001), and the salt-sensitivity index (SSi; HNaMAP−LNaMAP) was 6.0±1.9 vs 12.7±1.9 mmHg (P=0.03), respectively. In the SHM group, all rats were normotensive, and 36% were salt sensitive (SSi≥10 mmHg), whereas in the AD group ∼50% showed cSSHT. A 45% reduction in pNOB (P≤0.004) was observed in both groups in dietary transit. RMSAP increased in the AD group on both diets but more so on the HNa diet (S-II, P<0.03) than on the LNa diet (S-III, P<0.04). MAP modeling in rats without a renal hypertensive genotype indicated that the AD*HNa diet interaction (P=0.008) increases the likelihood of developing cSSHT. Translationally, these findings help to explain why subjects with clinical salt-sensitive normotension may transition to cSSHT.
Resumo:
Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13BN rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.
Resumo:
Seeds of Magnolia ovata were dried to different water contents to assess the viability and transcript abundance of genes related to seed development, cell cycle, cytoskeleton and desiccation tolerance.The expression of development, cell cycle and cytoskeleton relative genes (ABI3, CDC2-like and ACT2) alone could not explain the germination behaviour of M. ovata seeds in relation to drying damage. Irrespective of their initial water content, the seeds performed in the same way during the initial period of germination and the deleterious effects of desiccation only occurred in later stages. Expression of PKABA1, sHSP17.5 and 2-Cys-PRX did not show a relationship with desiccation. However, the expression patterns of PKABA1 and sHSP17.5 suggested the participation of these genes in protective mechanisms during the imbibition of M. ovata seeds.