124 resultados para hormone secretion
Resumo:
The efficiency and reliability of radioactive fucose as a specific label for newly synthesized glycoproteins were investigated. Young adult male rabbits were injected intravitreally with [3H]-fucose, [3H]-galactose, [3H]-mannose, N-acetyl-[3H]-glucosamine or N-acetyl-[3H]-mannosamine, and killed 40 h after injection. In another series of experiments rabbits were injected with either [3H]-fucose or several tritiated amino acids and the specific activity of the vitreous proteins was determined. Vitreous samples were also processed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and histological sections of retina, ciliary body and lens (the eye components around the vitreous body) were processed for radioautography. The specific activity (counts per minute per microgram of protein) of the glycoproteins labeled with [3H]-fucose was always much higher than that of the proteins labeled with any of the other monosaccharides or any of the amino acids. There was a good correlation between the specific activity of the proteins labeled by any of the above precursors and the density of the vitreous protein bands detected by fluorography. This was also true for the silver grain density on the radioautographs of the histological sections of retina, ciliary body and lens. The contribution of radioautography (after [3H]-fucose administration) to the elucidation of the biogenesis of lysosomal and membrane glycoproteins and to the determination of the intracellular process of protein secretion was reviewed. Radioactive fucose is the precursor of choice for studying glycoprotein secretion because it is specific, efficient and practical for this purpose
Resumo:
Genomic DNA from 23 patients with isolated growth hormone (GH) deficiency (12 males and 11 females: heights -4.9 ± 1.4 SDS) was screened for GH gene deletions by restriction endonuclease analysis of polymerase chain reaction amplification products. Three unrelated patients had typical features of severe GH deficiency and deletions (6.7 kb in two and 7.6 kb in one) of the GH gene. The two patients with 6.7-kb deletions developed growth-attenuating anti-GH antibodies whereas the patient with the 7.6-kb deletion continued to grow with GH replacement therapy. Our finding that 3/23 (~13%) Brazilian subjects had GH gene deletions agrees with previous studies of severe isolated GH deficiency subjects in other populations. Two of three subjects (67%) with deletions developed blocking antibodies despite administration of exogenous GH at low doses. Interestingly, only 1/10 of cases with affected relatives or parental consanguinity had GH-1 gene deletions
Resumo:
We studied the development of the insulin secretion mechanism in the pancreas of fetal (19- and 21-day-old), neonatal (3-day-old), and adult (90-day-old) rats in response to stimulation with 8.3 or 16.7 mM glucose, 30 mM K+, 5 mM theophylline (Theo) and 200 µM carbamylcholine (Cch). No effect of glucose or high K+ was observed on the pancreas from 19-day-old fetuses, whereas Theo and Cch significantly increased insulin secretion at this age (82 and 127% above basal levels, respectively). High K+ also failed to alter the insulin secretion in the pancreas from 21-day-old fetuses, whereas 8.3 mM and 16.7 mM glucose significantly stimulated insulin release by 41 and 54% above basal levels, respectively. Similar results were obtained with Theo and Cch. A more marked effect of glucose on insulin secretion was observed in the pancreas of 3-day-old rats, reaching 84 and 179% above basal levels with 8.3 mM and 16.7 mM glucose, respectively. At this age, both Theo and Cch increased insulin secretion to close to two-times basal levels. In islets from adult rats, 8.3 mM and 16.7 mM glucose, Theo, and Cch increased the insulin release by 104, 193, 318 and 396% above basal levels, respectively. These data indicate that pancreatic B-cells from 19-day-old fetuses were already sensitive to stimuli that use either cAMP or IP3 and DAG as second messengers, but insensitive to stimuli such as glucose and high K+ that induce membrane depolarization. The greater effect of glucose on insulin secretion during the neonatal period indicates that this period is crucial for the maturation of the glucose-sensing mechanism in B-cells.
Resumo:
Thyroid hormone (T3) is essential to normal brain development. Previously, we have shown that T3 induces cerebellar astrocyte proliferation. This effect is accompanied by alteration in glial fibrillary acidic protein (GFAP) and fibronectin organization. In the present study, we report that the C6 glioma cell line, which expresses GFAP and is classified as an undifferentiated astrocytic cell type, is a target for T3 action. The C6 monolayers were treated with 50 nM T3 for 3 days, after which the cells were maintained for 2 days without medium changes. In C6 cells, T3 induced the expression of proteins of 107, 73 and 62 kDa. The hormone also up-regulated protein bands of 100 (+50%), 37 (+50%) and 25.5 kDa (+50%) and down-regulated proteins of 94 (-100%), 86.5 (-100%), 68 (-100%), 60 (-100%), 54 (-33%), 51 (-33%) and 43.5 kDa (-33%). We suggest, on the basis of molecular mass, that the 54-, 51- and 43.5-kDa proteins could be the cytoskeletal proteins vimentin, GFAP and actin, respectively. The down-regulation of these proteins may be involved in the effects of thyroid hormone on C6 differentiation.
Resumo:
Lactic acid bacteria (LAB) are Gram-positive bacteria and are generally regarded as safe (GRAS) organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc) was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE) of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV) epitope-protein fusion (BCV-Nuc). BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.
Resumo:
Glucokinase (GCK) is an enzyme that regulates insulin secretion, keeping glucose levels within a narrow range. Mutations in the glucokinase gene cause a rare form of diabetes called maturity-onset diabetes of the young (MODY). An early onset (less than 25 years), autosomal dominant inheritance and low insulin secretion stimulated by glucose characterize MODY patients. Specific insulin and proinsulin were measured in serum by immunofluorimetric assays (IFMA) during a 75-g oral glucose tolerance test (OGTT). Two kindreds (SA and LZ) were studied and compared to non-diabetic unrelated individuals (control group 1) matched for age and body mass index (BMI). In one kindred, some of these subjects were also obese (BMI >26 kg/m2), and other family members also presented with obesity and/or late-onset NIDDM. The MODY patients were also compared to a group of five of their first-degree relatives with obesity and/or late-onset NIDDM. The proinsulin profile was different in members of the two MODY kindreds. Fasting proinsulin and the proinsulin/insulin ratio were similar in MODY members of kindred LZ and subjects from control group 1, but were significantly lower than in MODY members of kindred SA (P<0.02 and P<0.01, for proinsulin and proinsulin/insulin ratio, respectively). Moreover, MODY members of family SA had higher levels of proinsulin and proinsulin/insulin ratio, although not significantly different, when compared to their first-degree relatives and to subjects from control group 2. In conclusion, we observed variable degrees of proinsulin levels and proinsulin/insulin ratio in MODY members of two different kindreds. The higher values of these parameters found in MODY and non-MODY members of kindred SA is probably related to the obesity and late-onset NIDDM background present in this family.
Resumo:
The effect of substance P (SP) on thyrotropin (TSH) secretion is controversial. In this study we evaluated the effect of SP on TSH secretion by hemipituitaries of 3-month-old Wistar rats in vitro and its interaction with gastrin-releasing peptide (GRP) at equimolar concentrations (1 µM and 10 µM). TSH release was measured under basal conditions and 30 min after incubation in the absence or presence of SP, GRP or both peptides. Pituitary TSH content was also measured in the pituitary homogenate after incubation. SP at both concentrations caused a significant (P<0.05) increase in TSH secretion compared with all other groups, which was approximately 60% (1 µM) and 85% (10 µM) higher than that of the control group (23.3 ± 3.0 ng/ml). GRP at the lower concentration did not produce a statistically significant change in TSH secretion, whereas at the concentration of 10 µM it produced a 50% reduction in TSH. GRP co-incubated with substance P completely blocked the stimulatory effect of SP at both concentrations. Pituitary TSH content decreased in the SP-treated group compared to controls (0.75 ± 0.03 µg/hemipituitary) at the same proportion as the increase in TSH secretion, and this effect was also blocked when GRP and SP were co-incubated. In conclusion, in an in vitro system, SP increased TSH secretion acting directly at the pituitary level and this effect was blocked by GRP, suggesting that GRP is more potent than SP on TSH secretion, and that this inhibitory effect could be the predominant effect in vivo.
Resumo:
We investigated the participation of A1 or A2 receptors in the gonadotrope and their role in the regulation of LH and FSH secretion in adult rat hemipituitary preparations, using adenosine analogues. A dose-dependent inhibition of LH and FSH secretion was observed after the administration of graded doses of the R-isomer of phenylisopropyladenosine (R-PIA; 1 nM, 10 nM, 100 nM, 1 µM and 10 µM). The effect of R-PIA (10 nM) was blocked by the addition of 8-cyclopentyltheophylline (CPT), a selective A1 adenosine receptor antagonist, at the dose of 1 µM. The addition of an A2 receptor-specific agonist, 5-N-methylcarboxamidoadenosine (MECA), at the doses of 1 nM to 1 µM had no significant effect on LH or FSH secretion, suggesting the absence of this receptor subtype in the gonadotrope. However, a sharp inhibition of the basal secretion of these gonadotropins was observed after the administration of 10 µM MECA. This effect mimicked the inhibition induced by R-PIA, supporting the hypothesis of the presence of A1 receptors in the gonadotrope. R-PIA (1 nM to 1 µM) also inhibited the secretion of LH and FSH induced by phospholipase C (0.5 IU/ml) in a dose-dependent manner. These results suggest the presence of A1 receptors and the absence of A2 receptors in the gonadotrope. It is possible that the inhibition of LH and FSH secretion resulting from the activation of A1 receptors may have occurred independently of the increase in membrane phosphoinositide synthesis.
Resumo:
Guanylate cyclases (GC) serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin), two disulfides (guanylin and uroguanylin) and three disulfides (E. coli stable toxin, ST). The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC) has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.
Resumo:
Girolando (Gir x Holstein) is a very common dairy breed in Brazil because it combines the rusticity of Gir (Bos indicus) with the high milk yield of Holstein (Bos taurus). The ovarian follicular dynamics and hormonal treatments for synchronization of ovulation and timed artificial insemination were studied in Girolando heifers. The injection of a gonadotrophin-releasing hormone (GnRH) agonist was followed 6 or 7 days (d) later by prostaglandin F2a (PGF2a). Twenty-four hours after PGF2a injection either human chorionic gonadotropin (hCG, GPh-d6 and GPh-d7 groups) or estradiol benzoate (EB, GPE-d6 and GPE-d7 groups) was administered to synchronize ovulation and consequently allow timed artificial insemination (AI) 24 and 30 h after hCG and EB injection, respectively. Follicular dynamics in Girolando heifers was characterized by the predominance of three follicular waves (71.4%) with sizes of dominant follicles (10-13 mm) and corpus luteum (approximately 20 mm) similar to those for Bos indicus cattle. In the GnRH-PGF-hCG protocol, hCG administration induced earlier ovulation (67.4 h, P<0.01) compared to the control group (GnRH-PGF) and a better synchronization of ovulation, since most of it occurred within a period of 12 to 17 h. Pregnancy rate after timed AI was 42.8 (3/7, GPh-d6) to 50% (7/14, GPh-d7). In contrast, estradiol benzoate (GnRH-PGF-EB protocol) synchronized ovulation of only 5 of 11 heifers from the GPE-d7 group and of none (0/7) from the GPE-d6 group, which led to low pregnancy rates after timed AI (27.3 and 0%, respectively). However, since a small number of Girolando heifers was used to determine pregnancy rates in the present study, pregnancy rates should be confirmed with a larger number of animals.
Resumo:
Juvenile hormone (JH) exerts pleiotropic functions during insect life cycles. The regulation of JH biosynthesis by neuropeptides and biogenic amines, as well as the transport of JH by specific binding proteins is now well understood. In contrast, comprehending its mode of action on target organs is still hampered by the difficulties in isolating specific receptors. In concert with ecdysteroids, JH orchestrates molting and metamorphosis, and its modulatory function in molting processes has gained it the attribute "status quo" hormone. Whereas the metamorphic role of JH appears to have been widely conserved, its role in reproduction has been subject to many modifications. In many species, JH stimulates vitellogenin synthesis and uptake. In mosquitoes, however, this function has been transferred to ecdysteroids, and JH primes the ecdysteroid response of developing follicles. As reproduction includes a variety of specific behaviors, including migration and diapause, JH has come to function as a master regulator in insect reproduction. The peak of pleiotropy was definitely reached in insects exhibiting facultative polymorphisms. In wing-dimorphic crickets, differential activation of JH esterase determines wing length. The evolution of sociality in Isoptera and Hymenoptera has also extensively relied on JH. In primitively social wasps and bumble bees, JH integrates dominance position with reproductive status. In highly social insects, such as the honey bee, JH has lost its gonadotropic role and now regulates division of labor in the worker caste. Its metamorphic role has been extensively explored in the morphological differentiation of queens and workers, and in the generation of worker polymorphism, such as observed in ants.
Resumo:
Oxytocin (OT), a nonapeptide, was the first hormone to have its biological activities established and chemical structure determined. It was believed that OT is released from hypothalamic nerve terminals of the posterior hypophysis into the circulation where it stimulates uterine contractions during parturition, and milk ejection during lactation. However, equivalent concentrations of OT were found in the male hypophysis, and similar stimuli of OT release were determined for both sexes, suggesting other physiological functions. Indeed, recent studies indicate that OT is involved in cognition, tolerance, adaptation and complex sexual and maternal behaviour, as well as in the regulation of cardiovascular functions. It has long been known that OT induces natriuresis and causes a fall in mean arterial pressure, both after acute and chronic treatment, but the mechanism was not clear. The discovery of the natriuretic family shed new light on this matter. Atrial natriuretic peptide (ANP), a potent natriuretic and vasorelaxant hormone, originally isolated from rat atria, has been found at other sites, including the brain. Blood volume expansion causes ANP release that is believed to be important in the induction of natriuresis and diuresis, which in turn act to reduce the increase in blood volume. Neurohypophysectomy totally abolishes the ANP response to volume expansion. This indicates that one of the major hypophyseal peptides is responsible for ANP release. The role of ANP in OT-induced natriuresis was evaluated, and we hypothesized that the cardio-renal effects of OT are mediated by the release of ANP from the heart. To support this hypothesis, we have demonstrated the presence and synthesis of OT receptors in all heart compartments and the vasculature. The functionality of these receptors has been established by the ability of OT to induce ANP release from perfused heart or atrial slices. Furthermore, we have shown that the heart and large vessels like the aorta and vena cava are sites of OT synthesis. Therefore, locally produced OT may have important regulatory functions within the heart and vascular beds. Such functions may include slowing down of the heart or the regulation of local vascular tone.
Resumo:
Cytokines are molecules that were initially discovered in the immune system as mediators of communication between various types of immune cells. However, it soon became evident that cytokines exert profound effects on key functions of the central nervous system, such as food intake, fever, neuroendocrine regulation, long-term potentiation, and behavior. In the 80's and 90's our group and others discovered that the genes encoding various cytokines and their receptors are expressed in vascular, glial, and neuronal structures of the adult brain. Most cytokines act through cell surface receptors that have one transmembrane domain and which transduce a signal through the JAK/STAT pathway. Of particular physiological and pathophysiological relevance is the fact that cytokines are potent regulators of hypothalamic neuropeptidergic systems that maintain neuroendocrine homeostasis and which regulate the body's response to stress. The mechanisms by which cytokine signaling affects the function of stress-related neuroendocrine systems are reviewed in this article.
Resumo:
Recent studies from several groups have indicated that abnormal or ectopic expression and function of adrenal receptors for various hormones may regulate cortisol production in ACTH-independent hypercortisolism. Gastric inhibitory polypeptide (GIP)-dependent Cushing's syndrome has been described in patients with either unilateral adenoma or bilateral macronodular adrenal hyperplasia; this syndrome results from the large adrenal overexpression of the GIP receptor without any activating mutation. We have conducted a systematic in vivo evaluation of patients with adrenal Cushing's syndrome in order to identify the presence of abnormal hormone receptors. In macronodular adrenal hyperplasia, we have identified, in addition to GIP-dependent Cushing's syndrome, other patients in whom cortisol production was regulated abnormally by vasopressin, ß-adrenergic receptor agonists, hCG/LH, or serotonin 5HT-4 receptor agonists. In patients with unilateral adrenal adenoma, the abnormal expression or function of GIP or vasopressin receptor has been found, but the presence of ectopic or abnormal hormone receptors appears to be less prevalent than in macronodular adrenal hyperplasia. The identification of the presence of an abnormal adrenal receptor offers the possibility of a new pharmacological approach to control hypercortisolism by suppressing the endogenous ligands or by using specific antagonists for the abnormal receptors.
Resumo:
Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH) acting through a specific cell membrane receptor (ACTH-R). The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD) and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.