68 resultados para hepatolenticular degeneration
Resumo:
Chronic inflammation induced by amyloid-beta (Aβ) plays a key role in the development of age-related macular degeneration (AMD), and matrix metalloproteinase-9 (MMP-9), interleukin (IL)-6, and IL-8 may be associated with chronic inflammation in AMD. Sirtuin 1 (SIRT1) regulates inflammation via inhibition of nuclear factor-kappa B (NF-κB) signaling, and resveratrol has been reported to prevent Aβ-induced retinal degeneration; therefore, we investigated whether this action was mediated via activation of SIRT1 signaling. Human adult retinal pigment epithelial (RPE) cells were exposed to Aβ, and overactivation and knockdown of SIRT1 were performed to investigate whether SIRT1 is required for abrogating Aβ-induced inflammation. We found that Aβ-induced RPE barrier disruption and expression of IL-6, IL-8, and MMP-9 were abrogated by the SIRT1 activator SRT1720, whereas alterations induced by Aβ in SIRT1-silenced RPE cells were not attenuated by SRT1720. In addition, SRT1720 inhibited Aβ-mediated NF-κB activation and decrease of the NF-κB inhibitor, IκBα. Our findings suggest a protective role for SIRT1 signaling in Aβ-dependent retinal degeneration and inflammation in AMD.
Resumo:
Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP) and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34), animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13±0.05 V and 52.31±1.95 µs (control group, n=13) to 2.84±0.06 V and 59.71±2.79 µs (immobilized group, n=15), respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63±7.49 to 79.14±5.59 m/s) but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function.
Resumo:
The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.
Resumo:
Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.
Resumo:
Cardiac contusion is a potentially fatal complication of blunt chest trauma. The effects of a combination of quercetin and methylprednisolone against trauma-induced cardiac contusion were studied. Thirty-five female Sprague-Dawley rats were divided into five groups (n=7) as follows: sham, cardiac contusion with no therapy, treated with methylprednisolone (30 mg/kg on the first day, and 3 mg/kg on the following days), treated with quercetin (50 mg·kg−1·day−1), and treated with a combination of methylprednisolone and quercetin. Serum troponin I (Tn-I) and tumor necrosis factor-alpha (TNF-α) levels and cardiac histopathological findings were evaluated. Tn-I and TNF-α levels were elevated after contusion (P=0.001 and P=0.001). Seven days later, Tn-I and TNF-α levels decreased in the rats treated with methylprednisolone, quercetin, and the combination of methylprednisolone and quercetin compared to the rats without therapy, but a statistical significance was found only with the combination therapy (P=0.001 and P=0.011, respectively). Histopathological degeneration and necrosis scores were statistically lower in the methylprednisolone and quercetin combination group compared to the group treated only with methylprednisolone (P=0.017 and P=0.007, respectively). However, only degeneration scores were lower in the combination therapy group compared to the group treated only with quercetin (P=0.017). Inducible nitric oxide synthase positivity scores were decreased in all treatment groups compared to the untreated groups (P=0.097, P=0.026, and P=0.004, respectively). We conclude that a combination of quercetin and methylprednisolone can be used for the specific treatment of cardiac contusion.
Resumo:
This study aims to explore the effect of microRNA-21 (miR-21) on the proliferation of human degenerated nucleus pulposus (NP) by targeting programmed cell death 4 (PDCD4) tumor suppressor. NP tissues were collected from 20 intervertebral disc degeneration (IDD) patients, and from 5 patients with traumatic spine fracture. MiR-21 expressions were tested. NP cells from IDD patients were collected and divided into blank control group, negative control group (transfected with miR-21 negative sequences), miR-21 inhibitor group (transfected with miR-21 inhibitors), miR-21 mimics group (transfected with miR-21 mimics) and PDCD4 siRNA group (transfected with PDCD4 siRNAs). Cell growth was estimated by Cell Counting Kit-8; PDCD4, MMP-2,MMP-9 mRNA expressions were evaluated by qRT-PCR; PDCD4, c-Jun and p-c-Jun expressions were tested using western blot. In IDD patients, the expressions of miR-21 and PDCD4 mRNA were respectively elevated and decreased (both P<0.05). The miR-21 expressions were positively correlated with Pfirrmann grades, but negatively correlated with PDCD4 mRNA (both P<0.001). In miR-21 inhibitor group, cell growth, MMP-2 and MMP-9 mRNA expressions, and p-c-Jun protein expressions were significantly lower, while PDCD4 mRNA and protein expressions were higher than the other groups (all P<0.05). These expressions in the PDCD4 siRNA and miR-21 mimics groups was inverted compared to that in the miR-21 inhibitor group (all P<0.05). MiR-21 could promote the proliferation of human degenerated NP cells by targeting PDCD4, increasing phosphorylation of c-Jun protein, and activating AP-1-dependent transcription of MMPs, indicating that miR-21 may be a crucial biomarker in the pathogenesis of IDD.
Transference of lutein during cheese making, color stability, and sensory acceptance of prato cheese
Resumo:
The consumption of lutein is associated with the prevention and reduction of age-related macular degeneration. Its incorporation into Prato cheese as a yellowish food coloring is a valid alternative to increase the daily intake of this compound. However, part of the lutein added may be lost in the whey during the cheese making, or it can be degraded by light during storage, resulting in color changes reducing the sensory acceptance of the cheese. The objectives of this study were to determine the transference of the lutein (dye), added to the milk, in the whey, and cheese, to evaluate the effect of the lutein addition, light exposure, and storage time on the cheese color, and to verify the sensory acceptance of Prato cheese with addition of lutein. The lutein recovery of cheese was 95.25%. Color saturation (chrome) increased during storage time resulting in a cheese with more intense color, but there were no changes in the hue of the cheese. Adjusting the amount of lutein added to Prato cheese may lead to greater acceptance. The high recovery of lutein in the cheese and the fact that the hue remained unchanged during storage under light showed that the incorporation of lutein into Prato cheese is feasible from a technical point of view.
Resumo:
Abstract Bovine Spongiform Encephalopathy (BSE) is a virulent disease which may infect by affecting the central nervous system (CNS) tissues in cattle and causes degeneration in nerves. Central nervous system tissues such as brain and spinal cord which are classified as specified risk materials (SRMs) are regarded to be main source of infection. The contamination of the meat with the specific risk materials (SRMs) can occur in phases of slaughter, fragmentation of carcass and processing. This study was conducted in order to investigate the existence of CNS tissues in raw meat ball (cig kofte) which is commonly consumed in the Southeastern Region of Turkey, particularly in Şanlıurfa. For this purpose, 145 samples of raw meat ball were tested. The enzyme-linked immunosorbent assay (ELISA) kits (Ridascreen risk material 10/5, R-biofarm GmbH) which determine glial fibrillary acidic protein (GFAP) as determinant were used. As a result of the analyses, positivity was detected in 21 of totally 145 samples of raw meat ball (14.48%). 6 (4.14%) of the samples gave low level of positivity (≥ 0.1 standard absorbance), 10 (6.90%) gave medium level of positivity (>0.2 standard absorbance) and 5 (3.45%) gave high level of positivity (≥0.5 standard absorbance). As a consequence, meats are contaminated in any phase of both slaughter and meat production even if accidentally. Regarding this matter, necessary measures should be taken and hygiene rules should be applied.