180 resultados para exercise optimization
Resumo:
PURPOSE: to compare the blood pressure and oxygen consumption (VO2) responses between pregnant and non-pregnant women, during cycle ergometer exercise on land and in water. METHODS: ten pregnant (27 to 29 weeks of gestation) and ten non-pregnant women were enrolled. Two cardiopulmonary tests were performed on a cycle ergometer (water and land) at the heart rate corresponding to VO2, over a period of 30 minutes each. Exercise measurements consisted of recording blood pressure every five minutes, and heart rate and VO2 every 20 seconds. Two-way ANOVA was used and α=0.05 (SPSS 17.0). RESULTS: there was no difference in cardiovascular responses between pregnant and non-pregnant women during the exercise. The Pregnant Group demonstrated significant differences in systolic (131.6±8.2; 142.6±11.3 mmHg), diastolic (64.8±5.9; 74.5±5.3 mmHg), and mean blood pressure (87.0±4.1; 97.2±5.7 mmHg), during water and land exercise, respectively. The Non-pregnant women Group also had a significantly lower systolic (130.5±8.4; 135.9±8.7 mmHg), diastolic (67.4±5.7; 69.0±10.1 mmHg), and mean blood pressure (88.4±4.8; 91.3±7.8 mmHg) during water exercise compared to the land one. There were no significant differences in VO2 values between water and land exercises or between pregnant and non-pregnant women. After the first five-minute recovery period, both blood pressure and VO2 were similar to pre-exercise values. CONCLUSIONS: for pregnant women with 27 to 29 weeks of gestation, water exercise at the heart rate corresponding to VO2 is physiologically appropriate. These women also present a lower blood pressure response to exercise in water than on land.
Resumo:
PURPOSE: To determine fetal heart rate (FHR) responses to maternal resistance exercise for the upper and lower body at two different volumes, and after 25 minutes post-exercise.METHODS: Ten pregnant women (22-24 weeks gestation, 25.2±4.4 years of age, 69.8±9.5 kg, 161.6±5.2 cm tall) performed, at 22-24, 28-32 and 34-36 weeks, the following experimental sessions: Session 1 was a familiarization with the equipment and the determination of one estimated maximum repetition. For sessions 2, 3, 4 and 5,FHR was determined during the execution of resistance exercise on bilateral leg extension and pec-deck fly machines, with 1 and 3 sets of 15 repetitions; 50% of the weight load and an estimated repetition maximum. FHR was assessed with a portable digital cardiotocograph. Results were analyzed using Student's ttest, ANOVA with repeated measures and Bonferroni (α=0.05; SPSS 17.0).RESULTS: FHR showed no significant differences between the exercises at 22-24 weeks (bilateral leg extension=143.8±9.4 bpm, pec-deck fly=140.2±10.2 bpm, p=0.34), 28-30 weeks (bilateral leg extension=138.4±12.2 bpm, pec-deck fly=137.6±14.0 bpm, p=0.75) and 34-36 weeks (bilateral leg extension=135.7±5.8 bpm, pec-deck fly=139.7±13.3 bpm, p=0.38), between the volumes(bilateral leg extension at 22-24 weeks: p=0.36, at 28-30 weeks: p=0.19 and at 34-36 weeks: p=0.87; pec-deck fly at 22-24 weeks: p=0.43, at 28-30 weeks: p=0.61 and at 34-36 weeks: p=0.49) and after 25 minutes post-exercise.CONCLUSION: Results of this pilot study would suggest that maternal resistance exercise is safe for the fetus.
Resumo:
OBJETIVO: Avaliar a efetividade de um manual de orientação de exercícios domiciliares (MOED) para o assoalho pélvico (AP) na promoção da continência urinária em gestantes primigestas.MÉTODOS: Ensaio clínico com 87 participantes, avaliadas 6 vezes durante a gestação e divididas aleatoriamente em 3 grupos: Grupo supervisionado (Gsup), que praticou exercícios com supervisão; Grupo observado (Gobs), que praticou exercícios sem supervisão, e Grupo referência (Gref), que não praticou exercícios. Incontinência urinária (IU) (desfecho primário) e força muscular perineal (FMP) (desfecho secundário) foram avaliadas por intermédio de diário de perdas urinárias e perineometria, respectivamente. Foram utilizados o teste de Kruskal-Wallis, seguido do teste post hoc de Dunn, para variáveis contínuas, e o teste do χ2 e testes Z, com correções de Bonferroni, para proporções, com nível de significância de 5%.RESULTADOS: O Gsup e o Gobs apresentaram 6,9% de gestantes incontinentes, enquanto o Gref apresentou 96,6% de incontinentes. Quanto à FMP, o Gsup e o Gobs apresentaram valores médios de contração de 10 e 8,9 cmH2O, respectivamente, enquanto o Gref apresentou valor de 4,7 cmH2O. Ambos os resultados significantes.CONCLUSÃO: A utilização de um MOED é eficaz na promoção da continência urinária e no aumento da FMP em gestantes primigestas, independentemente de supervisão permanente.
Resumo:
A complement fixation test (CFT), performed in microtitre plates, based upon the use of crude antigenic preparation of Babesia equi was adapted for the detection of antibodies in serum of infected horses. The indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA) were also used for the immunodiagnosis of B. equi. Serum samples from 15 apparently healthy horses, previously conditioned to a high-speed equine treadmill, were taken before and after exercise. All the samples analyzed were positive for B. equi infection. There were no significant differences (P<0.01) between these 3 tests, or the condition of rest or stress. The combined use of CFT and IFAT or ELISA should be recommended in order to enable veterinary services to more efficiently prevent introduction of infected horses into disease-free areas.
Resumo:
The aim of this study was to evaluate the behavior of blood constituents in a group of horses that successfully completed long endurance rides in tropical conditions. Jugular vein puncture was done to collect blood before, during and after rides. Data were analyzed using a mathematic approach, based on the hematocrit and blood volume where the percentual change in plasma volume was used to correct the values of each variable analyzed. Significance was inferred when P<0.05. The proposed mathematical model to assess blood constituents concentrations allowed the observation of a different pattern of the variables behavior, pointing out that the approach followed by the authors could be more sensitive than ones that did not take this routine. In conclusion, the method used in this study enabled to monitor the physiological processes that actually occur during endurance effort in tropical conditions.
Resumo:
The acute administration of an indirect activator of the enzyme pyruvate dehydrogenase (PDH) in human athletes causes a reduction in blood lactate level during and after exercise. A single IV dose (2.5m.kg-1) of dichloroacetate (DCA) was administered before a submaximal incremental exercise test (IET) with five velocity steps, from 5.0 m.s-1 for 1 min to 6.0, 6.5, 7.0 and 7.5m.s-1 every 30s in four untrained mares. The blood collections were done in the period after exercise, at times 1, 3, 5, 10, 15 and 20 min. Blood lactate and glucose (mM) were determined electro-enzymatically utilizing a YSI 2300 automated analyzer. There was a 15.3% decrease in mean total blood lactate determined from the values obtained at all assessment times in both trials after the exercise. There was a decrease in blood lactate 1, 3, 5, 10, 15 and 20 min after exercise for the mares that received prior DCA treatment, with respective mean values of 6.31±0.90 vs 5.81±0.50, 6.45±1.19 vs 5.58±1.06, 6.07±1.56 vs 5.26±1.12, 4.88±1.61 vs 3.95±1.00, 3.66±1.41 vs 2.86±0.75 and 2.75±0.51 vs 2.04±0.30. There was no difference in glucose concentrations. By means of linear regression analysis, V140, V160, V180 and V200 were determined (velocity at which the rate heart is 140, 160, 180, and 200 beats/minute, respectively). The velocities related to heart rate did not differ, indicating that there was no ergogenic effect, but prior administration of a relatively low dose of DCA in mares reduced lactatemia after an IET.
Resumo:
This paper presents an approach to the solution of moving a robot manipulator with minimum cost along a specified geometric path in the presence of obstacles. The main idea is to express obstacle avoidance in terms of the distances between potentially colliding parts. The optimal traveling time and the minimum mechanical energy of the actuators are considered together to build a multiobjective function. A simple numerical example involving a Cartesian manipulator arm with two-degree-of-freedom is described.
Resumo:
The objective of this work was to optimize the parameter setup for GTAW of aluminum using an AC rectangular wave output and continuous feeding. A series of welds was carried-out in an industrial joint, with variation of the negative and positive current amplitude, the negative and positive duration time, the travel speed and the feeding speed. Another series was carried out to investigate the isolate effect of the negative duration time and travel speed. Bead geometry aspects were assessed, such as reinforcement, penetration, incomplete fusion and joint wall bridging. The results showed that currents at both polarities are remarkably more significant than the respective duration times. It was also shown that there is a straight relationship between welding speed and feeding speed and this relationship must be followed for obtaining sound beads. A very short positive duration time is enough for arc stability achievement and when the negative duration time is longer than 5 ms its effect on geometry appears. The possibility of optimizing the parameter selection, despite the high inter-correlation amongst them, was demonstrate through a computer program. An approach to reduce the number of variables in this process is also presented.
Resumo:
This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.
Resumo:
The objective of this study was to optimize and validate the solid-liquid extraction (ESL) technique for determination of picloram residues in soil samples. At the optimization stage, the optimal conditions for extraction of soil samples were determined using univariate analysis. Ratio soil/solution extraction, type and time of agitation, ionic strength and pH of extraction solution were evaluated. Based on the optimized parameters, the following method of extraction and analysis of picloram was developed: weigh 2.00 g of soil dried and sieved through a sieve mesh of 2.0 mm pore, add 20.0 mL of KCl concentration of 0.5 mol L-1, shake the bottle in the vortex for 10 seconds to form suspension and adjust to pH 7.00, with alkaline KOH 0.1 mol L-1. Homogenate the system in a shaker system for 60 minutes and then let it stand for 10 minutes. The bottles are centrifuged for 10 minutes at 3,500 rpm. After the settlement of the soil particles and cleaning of the supernatant extract, an aliquot is withdrawn and analyzed by high performance liquid chromatography. The optimized method was validated by determining the selectivity, linearity, detection and quantification limits, precision and accuracy. The ESL methodology was efficient for analysis of residues of the pesticides studied, with percentages of recovery above 90%. The limits of detection and quantification were 20.0 and 66.0 mg kg-1 soil for the PVA, and 40.0 and 132.0 mg kg-1 soil for the VLA. The coefficients of variation (CV) were equal to 2.32 and 2.69 for PVA and TH soils, respectively. The methodology resulted in low organic solvent consumption and cleaner extracts, as well as no purification steps for chromatographic analysis were required. The parameters evaluated in the validation process indicated that the ESL methodology is efficient for the extraction of picloram residues in soils, with low limits of detection and quantification.
Resumo:
Controversy still exists concerning the potential ergogenic benefit of caffeine (CAF) for exercise performance. The purpose of this study was to compare the effects of CAF ingestion on endurance performance during exercise on a bicycle ergometer at two different intensities, i.e., approximately 10% below and 10% above the anaerobic threshold (AT). Eight untrained males, non-regular consumers of CAF, participated in this study. AT, defined as the intensity (watts) corresponding to a lactate concentration of 4 mM, was determined during an incremental exercise test from rest to exhaustion on an electrically braked cycle ergometer. On the basis of these measurements, the subjects were asked to cycle until exhaustion at two different intensities, i.e., approximately 10% below and 10% above AT. Each intensity was performed twice in a double-blind randomized order by ingesting either CAF (5 mg/kg) or a placebo (PLA) 60 min prior to the test. Venous blood was analyzed for free fatty acid, glucose, and lactate, before, during, and immediately after exercise. Rating of perceived exertion and time to exhaustion were also measured during each trial. There were no differences in free fatty acids or lactate levels between CAF and PLA during and immediately after exercise for either intensity. Immediately after exercise glucose increased in the CAF trial at both intensities. Rating of perceived exertion was significantly lower (CAF = 14.1 ± 2.5 vs PLA = 16.6 ± 2.4) and time to exhaustion was significantly higher (CAF = 46.54 ± 8.05 min vs PLA = 32.42 ± 14.81 min) during exercise below AT with CAF. However, there was no effect of CAF treatment on rating of perceived exertion (CAF = 18.0 ± 2.7 vs PLA = 17.6 ± 2.3) and time to exhaustion (CAF = 18.45 ± 7.28 min vs PLA = 19.17 ± 4.37 min) during exercise above AT. We conclude that in untrained subjects caffeine can improve endurance performance during prolonged exercise performed below AT and that the decrease of perceived exertion can be involved in this process
Resumo:
We investigated the effects of aerobic training on the efferent autonomic control of heart rate (HR) during dynamic exercise in middle-aged men, eight of whom underwent exercise training (T) while the other seven continued their sedentary (S) life style. The training was conducted over 10 months (three 1-h sessions/week on a field track at 70-85% of the peak HR). The contribution of sympathetic and parasympathetic exercise tachycardia was determined in terms of differences in the time constant effects on the HR response obtained using a discontinuous protocol (4-min tests at 25, 50, 100 and 125 watts on a cycle ergometer), and a continuous protocol (25 watts/min until exhaustion) allowed the quantification of the parameters (anaerobic threshold, VO2 AT; peak O2 uptake, VO2 peak; power peak) that reflect oxygen transport. The results obtained for the S and the T groups were: 1) a smaller resting HR in T (66 beats/min) when compared to S (84 beats/min); 2) during exercise, a small increase in the fast tachycardia (D0-10 s) related to vagal withdrawal (P<0.05, only at 25 watts) was observed in T at all powers; at middle and higher powers a significant decrease (P<0.05 at 50, 100 and 125 watts) in the slow tachycardia (D1-4 min) related to a sympathetic-dependent mechanism was observed in T; 3) the VO2 AT (S = 1.06 and T = 1.33 l/min) and VO2 peak (S = 1.97 and T = 2.47 l/min) were higher in T (P<0.05). These results demonstrate that aerobic training can induce significant physiological adaptations in middle-aged men, mainly expressed as a decrease in the sympathetic effects on heart rate associated with an increase in oxygen transport during dynamic exercise.
Resumo:
The present article contains a brief review on the role of vasopressinergic projections to the nucleus tractus solitarii in the genesis of reflex bradycardia and in the modulation of heart rate control during exercise. The effects of vasopressin on exercise tachycardia are discussed on the basis of both the endogenous peptide content changes and the heart rate response changes observed during running in sedentary and trained rats. Dynamic exercise caused a specific vasopressin content increase in dorsal and ventral brainstem areas. In accordance, rats pretreated with the peptide or the V1 blocker into the nucleus tractus solitarii showed a significant potentiation or a marked blunting of the exercise tachycardia, respectively, without any change in the pressure response to exercise. It is proposed that the long-descending vasopressinergic pathway to the nucleus tractus solitarii serves as one link between the two main neural controllers of circulation, i.e., the central command and feedback control mechanisms driven by the peripheral receptors. Therefore, vasopressinergic input could contribute to the adjustment of heart rate response (and cardiac output) to the circulatory demand during exercise.
Resumo:
To evaluate the effect of exercise intensity on post-exercise cardiovascular responses, 12 young normotensive subjects performed in a randomized order three cycle ergometer exercise bouts of 45 min at 30, 50 and 80% of VO2peak, and 12 subjects rested for 45 min in a non-exercise control trial. Blood pressure (BP) and heart rate (HR) were measured for 20 min prior to exercise (baseline) and at intervals of 5 to 30 (R5-30), 35 to 60 (R35-60) and 65 to 90 (R65-90) min after exercise. Systolic, mean, and diastolic BP after exercise were significantly lower than baseline, and there was no difference between the three exercise intensities. After exercise at 30% of VO2peak, HR was significantly decreased at R35-60 and R65-90. In contrast, after exercise at 50 and 80% of VO2peak, HR was significantly increased at R5-30 and R35-60, respectively. Exercise at 30% of VO2peak significantly decreased rate pressure (RP) product (RP = HR x systolic BP) during the entire recovery period (baseline = 7930 ± 314 vs R5-30 = 7150 ± 326, R35-60 = 6794 ± 349, and R65-90 = 6628 ± 311, P<0.05), while exercise at 50% of VO2peak caused no change, and exercise at 80% of VO2peak produced a significant increase at R5-30 (7468 ± 267 vs 9818 ± 366, P<0.05) and no change at R35-60 or R65-90. Cardiovascular responses were not altered during the control trial. In conclusion, varying exercise intensity from 30 to 80% of VO2peak in young normotensive humans did not influence the magnitude of post-exercise hypotension. However, in contrast to exercise at 50 and 80% of VO2peak, exercise at 30% of VO2peak decreased post-exercise HR and RP.
Resumo:
The purpose of the present study was to examine the relationship between the electromyographic (EMG) activity and heart rate (HR) responses induced by isometric exercise performed by knee extension (KE) and flexion (KF) in men. Fifteen healthy male subjects, 21 ± 1.3 years (mean ± SD), were submitted to KE and KF isometric exercise tests at 100% of maximal voluntary contraction (MVC). The exercises were performed with one leg (right or left) and with two legs simultaneously, for 10 s in the sitting position with the hip and knee flexed at 90o. EMG activity (root mean square values) and HR (beats/min) were recorded simultaneously both at rest and throughout the sustained contraction. The HR responses to isometric exercise in KE and KF were similar when performed with one and two legs. However, the HR increase was always significantly higher in KE than KF (P<0.05), whereas the EMG activity was higher in KE than in KF (P<0.05), regardless of the muscle mass (one or two legs) involved in the effort. The correlation coefficients between HR response and the EMG activity during KE (r = 0.33, P>0.05) and KF (r = 0.15, P>0.05) contractions were not significant. These results suggest that the predominant mechanism responsible for the larger increase in HR response to KE as compared to KF in our study could be dependent on qualitative and quantitative differences in the fiber type composition found in each muscle group. This mechanism seems to demand a higher activation of motor units with a corresponding increase in central command to the cardiovascular centers that modulate HR control.