136 resultados para epiphyllous organisms
Resumo:
OBJECTIVE: To analyze the epidemiology, diagnosis, clinical aspects causes and evolution of infectious endocarditis. METHODS: The patients analyzed were treated at the University Hospital of the Faculdade de Medicina of Ribeirão Preto-USP and had a diagnosis of infectious endocarditis defined by Duke's criteria, which classifies infectious endocarditis as native, prosthetic valve or that occurring in intravenous drug users. RESULTS: One hundred and eighty episodes of infectious endocarditis in 168 patients were observed. Echocardiograms in 132 (73.3%) provided a diagnosis of infectious endocarditis in 111 (84%) patients; mitral valves were affected in 55 (30.5%), tricuspid valves in 30 (16.6%) and the aortic valve in 28 (15.5%) patients. Hemocultures were performed in 148 (93.8%) episodes of IE. The most commonly isolated infectious organisms were Staphylococcus aureus in 46 (27.2%) patients and Streptococcus viridans in 27 (15.9%). Complications occurred in 116 (64.4%) patients and 73 (40.5%) of the patients died. CONCLUSION: The general profile of the observed infectious endocarditis was similar to that reported in studies performed in other countries and included users of intravenous drugs. The high degree of mortality observed is not compatible with progress in diagnosis and treatment of infectious endocarditis and is probably due to the absence of diagnostic suspicion. The high frequency of fatal cases of septicemia (45.1% of deaths) in the patients studied indicates that unnoticed cases of infectious endocarditis had only been diagnosed at necropsy.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
Morphometric characters of two populations of Difflugia corona Wallich, 1864 collected in two climatic stations (Spring, Autumn) in lentic environments of Chaco Province, Argentina, are studied. In the first climatic station it was registered specimens of bigger size; in the second, the size of the individuals was very below the minimum values registered. It is suggested a possible relationship between the size of the organisms and the availability of the inhabitable vegetable substratum.
Resumo:
Metamysidopsis elongata atlantica (Bacescu, 1968) was reared in the laboratory for 45 days at 20±1°C and salinity of 30ppt. Growth curves (von Bertalanffy model) were calculated for both sexes and for each sex. The daily rate of carapace growth was significantly different between females and males (F test, p <0.05). Before the sexual maturity (14 days), the growth rate of females was higher than that of males (females, 0.0457 mm day-1; males, 0.0448 mm day-1). After the maturity (15 to 45 days), these rates decreased similarly for both sexes (females, 0.0203 mm day-1; males, 0.0174mm day-1). The average growth rate was 0.0207mm day-1 over the 45 days. Twelve molts were observed in a period of 60 days. The first five molts occurred up to 14 days old (age of the sexual differentiation), with a mean intermolt period of 2.9 days. From the 6th molt it increased to 5.6 days. The results suggest that the use of the carapace length is a good measure to calculate the growth and longevity of the organisms.
Resumo:
The effects of 0.1; 0.2; 0.4 and 0.8 mlPQ/L were analized on a zooplankton community, to determine the most sensitive species and to analize the occurence of physical abnormalities. A total of 40 taxa were determined. Paraquat affected significantly the zooplankton density but not the species richness. A progressive state of deformation of these organisms was also observed. Paraquat showed to be highly toxic for the zooplankton, so this herbicide should be strictly regulated in aquatic and terrestrial ecosystems.
Resumo:
A comparative study of the infaunal recruitment patterns among disturbed surface sediment mounds around Chasmagnathus granulata Dana, 1851 burrows and undisturbed adjacent sediments was done in two intertidal soft bottom habitats (an upper and a lower mudflat zone) in an estuarine inlet of Patos Lagoon, southern Brazil. The most abundant infaunal organisms were recruits of the polychaete Laeonereis acuta Treadwell, 1923 and of the tanaid Kalliapseudes schubartii Mañé-Garzón, 1949. The densities of these species did not differ significantly between upper and lower mudflat habitats. These species showed lower densities around crab burrows than in adjacent areas, where differences in sediment characteristics were observed as well. The results indicate that C. granulata disturbances may play an important role in regulating the soft bottom benthic community by controlling infaunal recruitment in the estuarine intertidal mudflats of the Patos Lagoon.
Resumo:
The impact of a power plant cooling system in the Bahía Blanca estuary (Argentina) on the survival of target zooplanktonic organisms (copepods and crustacean larvae) and on overall mesozooplankton abundance was evaluated over time. Mortality rates were calculated for juveniles and adults of four key species in the estuary: Acartia tonsa Dana, 1849 and Eurytemora americana Williams, 1906 (native and invading copepods), and larvae of the crab Chasmagnathus granulata Dana, 1851 and the invading cirriped Balanus glandula Darwin, 1854. Mean total mortality values were up to four times higher at the water discharge site than at intake, though for all four species, significant differences were only registered in post-capture mortality. The findings show no evidence of greater larval sensitivity. As expected, the sharpest decrease in overall mesozooplankton abundance was found in areas close to heated water discharge.
Resumo:
The aim of this study is to analyze and relate the spatial-temporal variability of macrozoobenthic assemblages to bottom characteristics and salinity fluctuations, in an estuarine shallow water region of Patos Lagoon. Monthly samples, between September 2002 and August 2003, were taken on six sampling stations (distant 90 m). Three biological samples with a 10 cm diameter corer, one sample for sediment analysis, fortnightly bottom topography measurements, and daily data of temperature and salinity were taken from each station. Two biotic and environmental conditions were identified: the first corresponding to spring and summer months, with low macrozoobenthos densities, low values of salinity, small variations in bottom topographic level and weak hydrodynamic activity. A second situation occurred in the months of fall and winter, which showed increased salinity, hydrodynamics and macrobenthos organisms. These results which contrast with previous studies carried out in the area, were attributed to failure in macrozoobenthos recruitments during summer period, especially of the bivalve Erodona mactroides Bosc, 1802 and the tanaid Kalliapseuses schubartii Mañe-Garzón, 1949. This results showed that recruitments of dominant species were influenced by salinity and hydrodynamic conditions.
Resumo:
The ostracode assemblages from Cananéia-Iguape estuarine/lagoon system (southernmost State of São Paulo) are here discussed in detail for the first time. Thirty-four sites, approximately 1 km equidistant, were sampled along the system, including the Cananéia Sea, Pequeno Sea, Cubatão Sea, Ribeira de Iguape River and Itapitangui River. The ostracodes throughout this area have poor assemblages, with a total of 662 specimens of dead and living organisms. The majority of the ostracode fauna is composed of euryhaline species, as follows: Cyprideis multidentata Hartmann, 1955 (174 specimens), Minicythere heinii Ornellas, 1974 (54 specimens), Tanella gracilis Kingma, 1948 (96 specimens) and Whatleyella sanguinettiae Coimbra, Carreño & Ferron, 1994 (226 specimens). Although there are few studies on the Brazilian mixohaline ostracode faunas, including the euryhaline marginal marine taxa, the published data show that the group is best known in the south and southeast regions. Based on this review and with the new data presented in this paper, the geographical distribution of eight mixohaline key species in southern and southeastern Brazil is also discussed.
Resumo:
The temporal variability of benthic macrofauna on Cassino beach, southernmost Brazil, was studied for a period of one year (June 2004 to May 2005) based on monthly sampling. Three sites were selected distant 50m from each other. At each site, 3 transects were established, 2m equidistant from one another. Each transect extended from the base of the primary dunes to the inner surf zone at approximately 1m in depth, with 7 or 8 sampling levels. Within transects, the distance between the levels was 20m until the upper swash zone, from which distance was 10m until the 1-meter isobath. The temporal variation in the abundance of benthic macrofauna observed in the present study can be attributed to (1) the positive effects of the recruitment peaks and migration of particular species to the swash zone and (2) negative effects of the migration of some species to deeper waters, as well (3) as mortality through natural causes (stranding and action of predators) and (4) human causes (harvesting and vehicle transit). We attribute the expressive abundance increase of benthic macrofauna to recruitment. The stranding, that is, the trapping of the organisms on the upper parts of the beach, is likely the main cause of abrupt drops in benthic macrofauna abundance.
Resumo:
The objective of this study was to evaluate benthic macroinvertebrate communities as bioindicators of water quality in five streams located in the "Reserva Particular do Patrimônio Natural" (RPPN) Mata Samuel de Paula and its surroundings, in the municipality of Nova Lima near the city of Belo Horizonte, Minas Gerais State, southeastern Brazil. This region has been strongly modified by human activities including mining and urbanization. Samples were collected in the field every three months between August 2004 and November 2005, totaling six samplings in the rainy and dry seasons. This assessment identified one area ecologically altered while the other sampling sites were found to be minimally disturbed systems, with well-preserved ecological conditions. However, according to the Biological Monitoring Work Party (BMWP) and the Average Score Per Taxon (ASPT) indices, all sampling sites had excellent water quality. A total of 14,952 organisms was collected, belonging to 155 taxa (148 Insecta, two Annelida, one Bivalvia, one Decapoda, one Planariidae, one Hydracarina, and one Entognatha). The most abundant benthic groups were Chironomidae (47.9%), Simuliidae (12.3%), Bivalvia (7.5%), Decapoda (6.1%), Oligochaeta (5.2%), Polycentropodidae (3.7%), Hydropsychidae (2.5%), Calamoceratidae (1.8%), Ceratopogonidae (1.7%), and Libellulidae (1.2%). The assessment of the benthic functional feeding groups showed that 34% of the macroinvertebrates were collector-gatherers, 29% predators, 24% collector-filterers, 8% shredders, and 5% scrapers. The RPPN Mata Samuel de Paula comprises diversified freshwater habitats that are of great importance for the conservation of many benthic taxa that are intolerant to organic pollution.
Resumo:
Metamysidopsis atlantica elongata (Bascescu, 1968) is a common mysid in the surf zone of sandy beaches from the state of Rio Grande do Sul, Brazil, where it is frequently recorded forming dense aggregations. Trough laboratory trials, behavioral responses to salinity (10, 20, 25, 28, 30, 40 e 45), temperature (10, 15, 20, 30±1ºC) and light (yes/no) were tested using adult males, adult females and juveniles. Although there was no response to temperature, the species showed clear response to salinity and light. In the presence of light, organisms remained in the bottom of the aquaria, but moved to surface when bottom salinities were increased. In the absence of light, adults moved to the surface. However, juveniles moved down to or remained on the bottom, maybe as a response to avoid adult predation.
Resumo:
Temporary wetlands undergo recurrent drought due to the scarcity of water, which disrupts the hydrological connectivity with adjacent aquatic systems. However, some environments retain water for longer periods, allowing greater persistence of the community. The current study evaluated differences in the microcrustacean assemblages and limnological variability between perennial and intermittent pools in a semi-arid region of Brazil. The abiotic features (water temperature, pH, total alkalinity, electrical conductivity and depth) of intermittent pools were affected more than perennial pools due to loss of water volume. This may have contributed to a higher average richness and diversity index in some intermittent pools and differences in the structure of the assemblages. The lowest species richness and diversity were recorded where physical factors, such as a large quantity of suspended solids and variability in the electrical conductivity of the water and pH, make the environment unsuitable for these organisms. These results suggest that community development in intermittent pools is interrupted by the dry season; when the water returns, due to rainfall or rising groundwater, each pond undergoes a different process of colonization. In these circumstances, the biological importance of temporary aquatic environments is clear, since such pools provide shelters and have an important role in the maintenance of the regional diversity of aquatic environments.
Resumo:
The present contribution aims at evaluating the carapace width vs. humid weight relationship and the condition factor of Ucides cordatus (Linnaeus, 1763), in the mangrove forests of the Ariquindá and Mamucabas rivers, state of Pernambuco, Brazil. These two close areas present similar characteristics of vegetation and substrate, but exhibit different degrees of environmental conservation: the Ariquindá River is the preserved area, considered one of the last non-polluted of Pernambuco, while the Mamucabas River suffers impacts from damming, deforestation and deposition of waste. A total of 1,298 individuals of U. cordatus were collected. Males were larger and heavier than females, what is commonly observed in Brachyura. Ucides cordatus showed allometric negative growth (p < 0.05), which is probably related to the dilatation that this species develops in the lateral of the carapace, which stores six pairs of gills. The values of b were within the limit established for aquatic organisms. Despite of the condition factor being considered an important feature to confirm the reproductive period, since it varies with cyclic activities, in the present study it was not correlated to the abundance of ovigerous females. However, it was considered a good parameter to evaluate environmental impacts, being significantly lower at the impacted area.
Resumo:
In the Cerrado vegetation, where the seasonal is well defined, rainfall has an important role in controlling the flow of streams and consequently on the structure of macroinvertebrates community. Despite the effects of rainfall associated with seasonality are well studied, little is known about the effects of stochastic rains on the community. In the present study we evaluated the structure and faunal composition of four first-order streams in Central Brazil during the dry season in two years, with and without stochastic rains. Community sampling was done by colonization of boards of high density polyethylene (HDPE), removed after one month submerged in streams. Analysis of Variance (ANOVA) performed indicated no difference in rarefied richness between the two periods, different from numeric density of organisms that was higher in the period without disturbance; moreover, the Detrended Correspondence Analysis (DCA) revealed differences in faunal composition between the two periods. Our results indicate that stochastic rainfall is an important factor in structuring the macroinvertebrates community in studied region.