75 resultados para dialysis membrane
Resumo:
Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 µCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.
Resumo:
The objective of this study was to investigate the occurrence of vancomycin-resistant Enterococcus (VRE) cross-transmission between two patient groups (long-term dialysis and kidney transplant patients). Molecular typing, by automated ribotyping with the RiboPrinter Microbial Characterization System (Qualicon, USA), was used to analyze VRE isolates from 31 fecal samples of 320 dialysis patients and 38 fecal samples of 280 kidney transplant patients. Clonal spread of E. faecalis and E. casseliflavus was observed intragroup, but not between the two groups of patients. In turn, transmission of E. gallinarum and E. faecium between the groups was suggested by the finding of vancomycin-resistant isolates belonging to the same ribogroup in both dialysis and transplant patients. The fact that these patients were colonized by VRE from the same ribogroup in the same health care facility provides evidence for cross-transmission and supports the adoption of stringent infection control measures to prevent dissemination of these bacteria.
Resumo:
Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA) and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs) generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL) and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4%) and CD86 (80.13 ± 2.81%)] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL) and IL-12 (249.57 ± 12.51 pg/mL) production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05) than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018), indicating that this recombinant adenovirus can effectively enhance the activity of DCs.
Resumo:
Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.
Resumo:
The transient receptor potential channels family (TRP channels) is a relatively new group of cation channels that modulate a large range of physiological mechanisms. In the nervous system, the functions of TRP channels have been associated with thermosensation, pain transduction, neurotransmitter release, and redox signaling, among others. However, they have also been extensively correlated with the pathogenesis of several innate and acquired diseases. On the other hand, the omega-3 polyunsaturated fatty acids (n-3 fatty acids) have also been associated with several processes that seem to counterbalance or to contribute to the function of several TRPs. In this short review, we discuss some of the remarkable new findings in this field. We also review the possible roles played by n-3 fatty acids in cell signaling that can both control or be controlled by TRP channels in neurodegenerative processes, as well as both the direct and indirect actions of n-3 fatty acids on TRP channels.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Resumo:
Reports remain insufficient on whether and how prostate-specific membrane antigen (PSMA) can influence in vivo osseous metastasis of prostate cancer (PCa). In the present study, the authors induced stable expression of PSMA in mouse PCa cell line RM-1. In vivo osseous metastasis was induced in 37 6-week-old female C57BL/6 mice weighing 22.45 ± 0.456 g. RM-1 cells were actively injected into the femoral bone cavity, leading to bilateral dissymmetry of bone density in the femoral bone. Tumor cells were also detected in bone tissue by pathological examination. The impact on bone density was demonstrated by the significant difference between animals injected with RM-PSMA cells (0.0738 ± 0.0185 g/cm²) and animals injected with RM-empty plasmid cells (0.0895 ± 0.0241 g/cm²). The lytic bone lesion of the RM-PSMA group (68.4%) was higher than that of the control group (27.8%). Immunohistochemistry showed that the expression of both vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) was distinctly higher in the RM-PSMA group than in the control group, while ELISA and Western blot assay indicated that VEGF and MMP-9 were higher in the RM-PSMA group compared to the control group (in vitro). Thus, the present study proposed and then confirmed for the first time that PSMA can promote in vivo osseous metastasis of PCa by increasing sclerotic destruction of PCa cells. Further analyses also suggested that PSMA functions positively on the invasive ability of RM-1 by increasing the expression of MMP-9 and VEGF by osseous metastases in vivo
Resumo:
The P1.HTR cell line includes highly transfectable cells derived from P815 mastocytoma cells originating from mouse breast tissue. Despite its widespread use in immunogenic studies, no data are available about the behavior of P1.HTR cells in the chick embryo chorioallantoic membrane model. The objective of the present investigation was to study the effects of P1.HTR cells implanted on the chorioallantoic membrane of chick embryos. We inoculated P1.HTR cells into the previously prepared chick embryo chorioallantoic membrane and observed the early and late effects of these cells by stereomicroscopy, histochemistry and immunohistochemistry. A highly angiotropic and angiogenic effect occurred early after inoculation and a tumorigenic potential with the development of mastocytoma keeping well mast cells immunophenotype was detected later during the development. The P1.HTR mastocytoma cell line is a good tool for the development of the chick embryo chorioallantoic membrane mastocytoma model and also for other studies concerning the involvement of blood vessels. The chick embryo chorioallantoic membrane model of mastocytoma retains the mast cell immunophenotype under experimental conditions and could be used as an experimental tool for in vivo preliminary testing of antitumor and antivascular drugs.
Resumo:
We investigated the risk factors for pulmonary hypertension (PH) in patients receiving maintenance peritoneal dialysis (MPD). A group of 180 end-stage renal disease patients (124 men and 56 women; mean age: 56.43±8.36) were enrolled in our study, which was conducted between January 2009 and June 2014. All of the patients received MPD treatment in the Dialysis Center of the Second Affiliated Hospital of Soochow University. Clinical data, laboratory indices, and echocardiographic data from these patients were collected, and follow-ups were scheduled bi-monthly. The incidence and relevant risk factors of PH were analyzed. The differences in measurement data were compared by t-test and enumeration data were compared with the χ2 test. Among the 180 patients receiving MPD, 60 were diagnosed with PH. The remaining 120 were regarded as the non-PH group. Significant differences were observed in the clinical data, laboratory indices, and echocardiographic data between the PH and non-PH patients (all P<0.05). Furthermore, hypertensive nephropathy patients on MPD showed a significantly higher incidence of PH compared with non-hypertensive nephropathy patients (P<0.05). Logistic regression analysis showed that the proportion of internal arteriovenous fistula, C-reactive protein levels, and ejection fraction were the highest risk factors for PH in patients receiving MPD. Our study shows that there is a high incidence of PH in patients receiving MPD and hypertensive nephropathy patients have an increased susceptibility to PH.
Resumo:
The importance of starch for the food industry makes it necessary to develop new, fast, economic and accurate methodologies for its quantification. In the present paper starch hydrolysis using commercial enzymes of industrial grade are studied aiming to develop an easy and cheap analysis, available to a greater number of industries and technicians. The proposed method is simple, divided in a first step where soluble sugars are eliminated from the samples by using dialysis, followed by starch hydrolysis of the retained fraction with a thermoresistent bacterial alfa-amylase (Termamyl 120L®) and an amyloglucosidase (AMG 300L®). The hydrolysis conditions were those suggested by the enzyme producer. After the hydrolysis step the material was dialysed again for the extraction of glucose that was quantified by the glucose-oxidase colorimetric reactant. The results allowed the construction of calibration equations for starch determination on the analyzed samples. These samples were produced on a laboratory scale and native and acid-modified corn starches were added in known concentrations. By considering the final dilutions employed for glucose determination on the samples, it was possible to confirm that they were identical to that of the glucose-oxidase reactant calibration.
Resumo:
We describe the clinical course of a case of peritonitis caused by Salmonella sp. after an episode of intestinal salmonellosis, and a brief review of the literature is also done.
Resumo:
INTRODUCTION: The decision of when to start dialysis in Acute Kidney Injury (AKI) patients with overt uremia is strongly established, however, when blood urea nitrogen (BUN) levels is < 100 mg/dL the timing of initiation of dialysis remains uncertain. Purpose: The aim of this study was to assess mortality and renal function recovery AKI patients started on dialysis at different BUN levels. METHODS: This was a retrospective study performed at Medical School Hospital, São Paulo, Brazil, enrolling 86 patients underwent to dialysis. RESULTS: Dialysis was started when BUN < 75 mg/dl in 23 patients (Group I) and BUN > 75 mg/dl in 63 patients (Group II). Hypervolemia and mortality were higher in Group I than in Group II (65.2% vs. 14.3% - p < 0.05, 39.1% vs. 68.9%- p < 0.05, respectively). Among survivors, the rate of renal function recovery was higher in Group I (71.4% and 36.8%, respectively - p < 0.05). Multivariate analysis showed that sepsis, age > 60 years, peritoneal dialysis and BUN > 75 mg/dl at dialysis initiation were independently related with mortality. CONCLUSIONS: Lower mortality and higher renal function recovery rates were associated with early dialysis initiated at lower BUN leves in AKI patients.
Resumo:
Introduction: Experimental studies have suggested that indoxyl sulfate (IS), a protein-bound uremic toxin, may be involved in the development of renal osteodystrophy. Objective: evaluate the association between IS levels and biochemical parameters related to mineral metabolism and bone histomorphometry in a cohort of pre-dialysis chronic kidney disease (CKD) patients. Methods: This is a post-hoc analysis of an observational study evaluating the association between coronary calcification and bone biopsy findings in 49 patients (age: 52 ± 10 years; 67% male; estimated glomerular filtration rate: 36 ± 17 ml/min). Serum levels of IS were measured. Results: Patients at CKD stages 2 and 3 presented remarkably low bone formation rate. Patients at CKD stages 4 and 5 presented significantly higher osteoid volume, osteoblast and osteoclast surface, bone fibrosis volume and bone formation rate and a lower mineralization lag time than CKD stage 2 and 3 patients. We observed a positive association between IS levels on one hand and the bone formation rate, osteoid volume, osteoblast surface and bone fibrosis volume on the other. Multivariate regression models confirmed that the associations between IS levels and osteoblast surface and bone fibrosis volume were both independent of demographic and biochemical characteristics of the study population. A similar trend was observed for the bone formation rate. Conclusion: Our findings demonstrated that IS is positively associated with bone formation rate in pre-dialysis CKD patients.
Resumo:
Introduction: The treatment offered to chronic kidney disease (CKD) patients before starting hemodialysis (HD) impacts prognosis. Objective: We seek differences among incident HD patients according to the distance between home and the dialysis center. Methods: We included 179 CKD patients undergoing HD. Patients were stratified in two groups: "living near the dialysis center" (patients whose hometown was in cities up to 100 km from the dialysis center) or as "living far from the dialysis center" (patients whose hometown was more than 100 km from the dialysis center). Socioeconomic status, laboratory results, awareness of CKD before starting HD, consultation with nephrologist before the first HD session, and type of vascular access when starting HD were compared between the two groups. Comparisons of continuous and categorical variables were performed using Student's t-test and the Chi-square test, respectively. Results: Ninety (50.3%) patients were classified as "living near the dialysis center" and 89 (49.7%) as "living far from the dialysis center". Patients living near the dialysis center were more likely to know about their condition of CKD than those living far from the dialysis center, respectively 46.6% versus 28.0% (p = 0.015). Although without statistical significance, patients living near the dialysis center had more frequent previous consultation with nephrologists (55.5% versus 42.6%; p = 0.116) and first HD by fistula (30.0% versus 19.1%; p = 0.128) than those living far from the dialysis center. Conclusion: There are potential advantages of CKD awareness, referral to nephrologists and starting HD through fistula among patients living near the dialysis center.
Resumo:
Abstract Introduction: Sepsis, an extremely prevalent condition in the intensive care unit, is usually associated with organ dysfunction, which can affect heart and kidney. Objective: To determine whether the cardiac dysfunction and the Troponin I forecast the occurrence of acute renal failure in sepsis. Methods: Cardiac dysfunction was assessed by echocardiography and by the serum troponin I levels, and renal impairment by AKIN criteria and the need of dialysis. Twenty-nine patients with incident sepsis without previous cardiac or renal dysfunction were enrolled. Results and Discussion: Patients averaged 75.3 ± 17.3 years old and 55% were male. Median APACHE II severity score at ICU admission was 16 (9.7 - 24.2) and mortality rate in 30 days was 45%. On the fifth day, 59% had ventricular dysfunction. Troponin serum levels on day 1 in the affected patients were 1.02 ± 0.6 ng/mL compared with 0.23 ± 0.18 ng/mL in patients without heart dysfunction (p = 0.01). Eighteen out of 29 patients (62%) underwent renal replacement therapy (RRT) and the percent of patients with ventricular dysfunction who required dialysis was higher (94% vs. 16%, p = 0.0001). Values of troponin at day 1 were used to develop a ROC curve to determine their ability to predict the need of dialysis. The area under the curve was 0.89 and the cutoff value was 0.4 ng/mL. Conclusion: We found that an elevation in serum troponin levels, while guarding a relationship with ventricular dysfunction, can be a precious tool to predict the need for dialysis in sepsis patients.