90 resultados para cytoplasmic dynein


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a result of recent investigations, the cytoskeleton can be viewed as a cytoplasmic system of interconnected filaments with three major integrative levels: self-assembling macromolecules, filamentous polymers, e.g., microtubules, intermediate filaments and actin filaments, and supramolecular structures formed by bundles of these filaments or networks resulting from cross-bridges between these major cytoskeletal polymers. The organization of this biological structure appears to be sensitive to fine spatially and temporally dependent regulatory signals. In differentiating neurons, regulation of cytoskeleton organization is particularly relevant, and the microtubule-associated protein (MAP) tau appears to play roles in the extension of large neuritic processes and axons as well as in the stabilization of microtubular polymers along these processes. Within this context, tau is directly involved in defining neuronal polarity as well as in the generation of neuronal growth cones. There is increasing evidence that elements of the extracellular matrix contribute to the control of cytoskeleton organization in differentiating neurons, and that these regulations could be mediated by changes in MAP activity. In this brief review, we discuss the possible roles of tau in mediating the effects of extracellular matrix components on the internal cytoskeletal arrays and its organization in growing neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programmed cell death in the form of apoptosis involves a network of metabolic events and may be triggered by a variety of stimuli in distinct cells. The nervous system contains several neuron and glial cell types, and developmental events are strongly dependent on selective cell interactions. Retinal explants have been used as a model to investigate apoptosis in nervous tissue. This preparation maintains the structural complexity and cell interactions similar to the retina in situ, and contains cells in all stages of development. We review the finding of nuclear exclusion of several transcription factors during apoptosis in retinal cells. The data reviewed in this paper suggest a link between apoptosis and a failure in the nucleo-cytoplasmic partition of transcription factors. It is argued that the nuclear exclusion of transcription factors may be an integral component of apoptosis both in the nervous system and in other types of cells and tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90% of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs), and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertebrate gap junctions are aggregates of transmembrane channels which are composed of connexin (Cx) proteins encoded by at least fourteen distinct genes in mammals. Since the same Cx type can be expressed in different tissues and more than one Cx type can be expressed by the same cell, the thorough identification of which connexin is in which cell type and how connexin expression changes after experimental manipulation has become quite laborious. Here we describe an efficient, rapid and simple method by which connexin type(s) can be identified in mammalian tissue and cultured cells using endonuclease cleavage of RT-PCR products generated from "multi primers" (sense primer, degenerate oligonucleotide corresponding to a region of the first extracellular domain; antisense primer, degenerate oligonucleotide complementary to the second extracellular domain) that amplify the cytoplasmic loop regions of all known connexins except Cx36. In addition, we provide sequence information on RT-PCR primers used in our laboratory to screen individual connexins and predictions of extension of the "multi primer" method to several human connexins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Connexin46 (Cx46) forms functional hemichannels in the absence of contact by an apposed hemichannel and we have used these hemichannels to study gating and permeation at the single channel level with high time resolution. Using both cell-attached and -excised patch configurations, we find that single Cx46 hemichannels exhibit some properties expected of half of a gap junction channel, as well as novel properties. Cx46 hemichannels have a large unitary conductance (~300 pS) and a relatively large pore as inferred from permeability to TEA. Both monovalent cations and anions can permeate, but cations are substantially more permeable. The open channel conductance shows marked inward rectification in symmetric salts. We find that the conductance and permeability properties of Cx46 cell-cell channels can be explained by the series addition of two hemichannels. These data suggest that the pore structures of unapposed hemichannels and cell-cell channels are conserved. Also like cell-cell channels, unapposed Cx46 hemichannels are closed by elevated levels of H+ or Ca2+ ions on the cytoplasmic face. Closure occurs in excised patches indicating that the actions of these agents do not require a soluble cytoplasmic factor. Fast (<0.5 ms) application of H+ to either side of the open hemichannel causes an immediate small reduction in unitary conductance followed by complete closure with latencies that are dependent on H+ concentration and side of application; sensitivity is much greater to H+ on the cytoplasmic side. Closure by cytoplasmic H+ does not require that the hemichannel be open. Thus, H+ ions readily permeate Cx46 hemichannels, but at high enough concentration close them by acting at a cytoplasmic site(s) that causes a conformational change resulting in complete closure. Extracellular H+ may permeate to act on the cytoplasmic site or act on a lower affinity extracellular site. Thus, the unapposed hemichannel is a valuable tool in addressing fundamental questions concerning the operation of gap junction channels that are difficult to answer by existing methods. The ability of Cx46, and perhaps other connexins, to form functional unapposed hemichannels that are opened by moderate depolarization may represent an unexplored role of connexins as mediators of transport across the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterization of proteins from Brucella spp, the causative agent of brucellosis, has been the subject of intensive research. We have described an 18-kDa cytoplasmic protein of Brucella abortus and shown the potential usefulness of this protein as an antigen for the serologic diagnosis of brucellosis. The amino acid sequence of the protein showed a low but significant homology with that of lumazine synthases. Lumazine is an intermediate product in bacterial riboflavin biosynthesis. The recombinant form of the 18-kDa protein (expressed in E. coli) folds like the native Brucella protein and has lumazine-synthase enzymatic activity. Three-dimensional analysis by X-ray crystallography of the homolog Bacillus subtilis lumazine synthase has revealed that the enzyme forms an icosahedral capsid. Recombinant lumazine synthase from B. abortus was crystallized, diffracted X rays to 2.7-Å resolution at room temperature, and the structure successfully solved by molecular replacement procedures. The macromolecular assembly of the enzyme differs from that of the enzyme from B. subtilis. The Brucella enzyme remains pentameric (90 kDa) in its crystallographic form. Nonetheless, the active sites of the two enzymes are virtually identical at the structural level, indicating that inhibitors of these enzymes could be viable pharmaceuticals across a broad species range. We describe the structural reasons for the differences in their quaternary arrangement and also discuss the potential use of this protein as a target for the development of acellular vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium ions are widely recognized to play a fundamental role in the regulation of several biological processes. Transient changes in cytoplasmic calcium ion concentration represent a key step for neurotransmitter release and the modulation of cell membrane excitability. Evidence has accumulated for the involvement of calcium ions also in nociception and antinociception, including the analgesic effects produced by opioids. The combination of opioids with drugs able to interfere with calcium ion functions in neurons has been pointed out as a useful alternative for safer clinical pain management. Alternatively, drugs that reduce the flux of calcium ions into neurons have been indicated as analgesic alternatives to opioids. This article reviews the manners by which calcium ions penetrate cell membranes and the changes in these mechanisms caused by opioids and calcium antagonists regarding nociceptive and antinociceptive events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal syndrome characterized by intravascular hemolysis mediated by complement, thrombotic events and alterations in hematopoiesis. Basically, the molecular events which underlie the complexity of the syndrome consist of the absence of the glycosylphosphatidylinositol (GPI) anchor as a consequence of somatic mutations in the PIG-A gene, located on the X chromosome. The GPI group is responsible for the attachment of many proteins to the cytoplasmic membrane. Two of them, CD55 and CD59, have a major role in the inhibition of the action of complement on the cellular membrane of blood cells. The absence of GPI biosynthesis can lead to PNH. Since mutations in the PIG-A gene are always present in patients with PNH, the aim of this study was to characterize the mutations in the PIG-A gene in Brazilian patients. The analysis of the PIG-A gene was performed using DNA samples derived from bone marrow and peripheral blood. Conformation-sensitive gel electrophoresis was used for screening the mutation and sequencing methods were used to identify the mutations. Molecular analysis permitted the identification of three point mutations in three patients: one G->A transition in the 5' portion of the second intron, one T->A substitution in the second base of codon 430 (Leu430->stop), and one deletion deltaA in the third base of codon 63. This study represents the first description of mutations in the PIG-A gene in a Brazilian population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sm14 is a 14-kDa vaccine candidate antigen from Schistosoma mansoni that seems to be involved in cytoplasmic trafficking of fatty acids. Although schistosomes have a high requirement for lipids, they are not able to synthesize fatty acids and sterols de novo. Thus, they must acquire host lipids. In order to determine whether Sm14 is present in different stages of the life cycle of the parasite, we performed RT-PCR. Sm14 mRNA was identified in all stages of the life cycle studied, mainly schistosomulum, adult worm and egg. Additionally, we used a rabbit anti-Sm14 polyclonal antibody in an indirect immunofluorescence assay to localize Sm14 in adult worm sections. The basal lamella of the tegument and the gut epithelium were strongly labeled. These tissues have a high flow of and demand for lipids, a finding that supports the putative role of Sm14 as an intracellular transporter of fatty acids from host cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotaviruses are the major cause of viral diarrhea in humans and animals. Actinomycin D (Act D) is an antibiotic that intercalates DNA and therefore inhibits DNA-dependent transcription. The current study was carried out to assess the influence of Act D on the replication of simian rotavirus (SA11) in cell culture. Virus-infected MA-104 cell cultures were studied in the presence of Act D at concentrations of 1.25 and 2.5 µg/ml. Treatment of rotavirus-infected cells with 2.5 µg/ml Act D 48 h post-infection reduced the cytoplasmic metachromasia after staining with acridine orange by 25%. Viral RNA labeled with ³H-uridine in the presence of the drug was separated by polyacrylamide gel electrophoresis. Viral RNA replication was not affected by Act D, but increased ³H-uridine uptake was demonstrable by infected cells in the presence of the drug. This possibly was due to the inhibition of cellular RNA synthesis by Act D, which thus enhances incorporation of the radionuclide into the viral RNA. Act D reduced the number of infected cells presenting virus-specific fluorescence 48 h post-infection by more than 50%. These data suggest that Act D may have complexed with viral RNA and prevented newly synthesized mRNA from being translated, but may not have prevented early replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serratia marcescens cytotoxin was purified to homogeneity by ion-exchange chromatography on a DEAE Sepharose Fast Flow column, followed by gel filtration chromatography on a Sephadex G100 column. The molecular mass of the cytotoxin was estimated to be about 50 kDa. Some biological properties of the cytotoxin were analyzed and compared with well-characterized toxins, such as VT1, VT2 and CNF from Escherichia coli and hemolysin produced by S. marcescens. The sensitivity of the cell lines CHO, HeLa, HEp-2, Vero, BHK-21, MA 104 and J774 to the cytotoxin was determined by the cell viability assay using neutral red. CHO and HEp-2 were highly sensitive, with massive cellular death after 1 h of treatment, followed by BHK-21, HeLa, Vero and J774 cells, while MA 104 was insensitive to the toxin. Cytotoxin induced morphological changes such as cell rounding with cytoplasmic retraction and nuclear compactation which were evident 15 min after the addition of cytotoxin. The cytotoxic assays show that 15 min of treatment with the cytotoxin induced irreversible intoxication of the cells, determined by loss of cell viability. Concentrations of 2 CD50 (0.56 µg/ml) of purified cytotoxin did not present any hemolytic activity, showing that the cytotoxin is distinct from S. marcescens hemolysin. Antisera prepared against S. marcescens cytotoxin did not neutralize the cytotoxic activity of VT1, VT2 or CNF toxin, indicating that these toxins do not share antigenic determinants with cytotoxin. Moreover, we did not detect gene sequences for any of these toxins in S. marcescens by PCR assay. These results suggest that S. marcescens cytotoxin is not related to any of these toxins from E. coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infarct-induced heart failure is usually associated with cardiac hypertrophy and decreased ß-adrenergic responsiveness. However, conflicting results have been reported concerning the density of L-type calcium current (I Ca(L)), and the mechanisms underlying the decreased ß-adrenergic inotropic response. We determined I Ca(L) density, cytoplasmic calcium ([Ca2+]i) transients, and the effects of ß-adrenergic stimulation (isoproterenol) in a model of postinfarction heart failure in rats. Left ventricular myocytes were obtained by enzymatic digestion 8-10 weeks after infarction. Electrophysiological recordings were obtained using the patch-clamp technique. [Ca2+]i transients were investigated via fura-2 fluorescence. ß-Adrenergic receptor density was determined by [³H]-dihydroalprenolol binding to left ventricle homogenates. Postinfarction myocytes showed a significant 25% reduction in mean I Ca(L) density (5.7 ± 0.28 vs 7.6 ± 0.32 pA/pF) and a 19% reduction in mean peak [Ca2+]i transients (0.13 ± 0.007 vs 0.16 ± 0.009) compared to sham myocytes. The isoproterenol-stimulated increase in I Ca(L) was significantly smaller in postinfarction myocytes (Emax: 63.6 ± 4.3 vs 123.3 ± 0.9% in sham myocytes), but EC50 was not altered. The isoproterenol-stimulated peak amplitude of [Ca2+]i transients was also blunted in postinfarction myocytes. Adenylate cyclase activation through forskolin produced similar I Ca(L) increases in both groups. ß-Adrenergic receptor density was significantly reduced in homogenates from infarcted hearts (Bmax: 93.89 ± 20.22 vs 271.5 ± 31.43 fmol/mg protein in sham myocytes), while Kd values were similar. We conclude that postinfarction myocytes from large infarcts display reduced I Ca(L) density and peak [Ca2+]i transients. The response to ß-adrenergic stimulation was also reduced and was probably related to ß-adrenergic receptor down-regulation and not to changes in adenylate cyclase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desmin is the intermediate filament (IF) protein occurring exclusively in muscle and endothelial cells. There are other IF proteins in muscle such as nestin, peripherin, and vimentin, besides the ubiquitous lamins, but they are not unique to muscle. Desmin was purified in 1977, the desmin gene was characterized in 1989, and knock-out animals were generated in 1996. Several isoforms have been described. Desmin IFs are present throughout smooth, cardiac and skeletal muscle cells, but can be more concentrated in some particular structures, such as dense bodies, around the nuclei, around the Z-line or in costameres. Desmin is up-regulated in muscle-derived cellular adaptations, including conductive fibers in the heart, electric organs, some myopathies, and experimental treatments with drugs that induce muscle degeneration, like phorbol esters. Many molecules have been reported to associate with desmin, such as other IF proteins (including members of the membrane dystroglycan complex), nebulin, the actin and tubulin binding protein plectin, the molecular motor dynein, the gene regulatory protein MyoD, DNA, the chaperone alphaB-crystallin, and proteases such as calpain and caspase. Desmin has an important medical role, since it is used as a marker of tumors' origin. More recently, several myopathies have been described, with accumulation of desmin deposits. Yet, after almost 30 years since its identification, the function of desmin is still unclear. Suggested functions include myofibrillogenesis, mechanical support for the muscle, mitochondrial localization, gene expression regulation, and intracellular signaling. This review focuses on the biochemical interactions of desmin, with a discussion of its putative functions.