64 resultados para computer prediction
Resumo:
Solid mixtures for refreshment are already totally integrated to the Brazilian consumers' daily routine, because of their quick preparation method, yield and reasonable price - quite lower if compared to 'ready-to-drink' products or products for prompt consumption, what makes them economically more accessible to low-income populations. Within such a context, the aim of this work was to evaluate the physicochemical and mineral composition, as well as the hygroscopic behavior of four different brands of solid mixture for mango refreshment. The BET, GAB, Oswim and Henderson mathematical models were built through the adjustment of experimental data to the isotherms of adsorption. Results from the physiochemical evaluation showed that the solid mixtures for refreshments are considerable sources of ascorbic acid and reductor sugar; and regarding mineral compounds, they are significant sources of calcium, sodium and potassium. It was also verified that the solid mixtures for refreshments of the four studied brands are considered highly hygroscopic.
Resumo:
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.
Resumo:
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.
Resumo:
Castor bean cropping has great social and economic value, but its production has been affected by factors such as low quality seeds used for sowing. The quick and precise evaluation of seed quality by x-ray test is known as an effective method to evaluate seed lots, but little is known about the interpretation between of the type of radiographic image and the seed quality correlation. The potential of x-ray analysis as a marker of seed physiological quality and as an initial process for the implementation of the use of computer-assisted image analysis was investigated using castor bean seeds of the different cultivars. The seeds were classified according to internal morphology visualized in the radiography and subjected to the germination test, emergency and seedling growth rate. It was possible to identify the different types of internal tissues, morphological and physical damage in castor bean seeds using the x-ray test. Tissues generating translucent images, embryo deformation, or tissues with less than 50% of endosperm reserves or spotted, negatively affected the physiological potential of the seed lots. Radiographic analysis is effective as an instrument to improve castor bean seed lot quality. This non destructive analysis allows the prediction of seedling performance and enabled the selection of high-quality seeds under the standards of a sustainable and precision agriculture