68 resultados para chloroform
Resumo:
Many pharmacological effects have been ascribed to extracts of Psidium guajava L. (guava) leaves. However, in spite of its widespread use in Brazilian folk medicine and a reasonable number of scientific reports about it, we could not find any study dealing with its action on the mammalian myocardium. In the present study, by measuring isometric force, we observed that the crude extract of P. guajava (water-alcohol extract obtained by macerating dry leaves) depresses the guinea pig atrial contractility in a concentration-dependent fashion (N = 8 hearts, 15 trials). The compound with cardiac activity was concentrated by extraction in a Soxhlet apparatus using 17 M glacial acetic acid after removing the less polar fractions (hexane, chloroform, acetone, ethanol and methanol), suggesting that this compound is a highly polar substance. In the isolated guinea pig left atrium the acetic acid fraction (10-800 mg/l) of P. guajava 1) reversibly decreased myocardial force in a concentration-dependent fashion (EC50 = 0.07g/l, N = 5 hearts, 9 trials, P<0.05), 2) increased the atrial relaxation time measured at 20% of the force amplitude up to 35% (91 ± 15 to 123 ± 30 ms, N = 3 hearts, 6 trials, P<0.05), 3) abolished the positive staircase effect (Bowditch phenomenon) in a concentration-dependent fashion suggesting a decrease of the cellular inward calcium current (N = 4 hearts, 8 trials, P<0.05), and 4) its inotropic effect was abolished by cholinergic receptor blockade with 1.5 mM atropine sulfate, indicating a cholinergic involvement in the mechanism of action of the extract (N = 7 hearts, 15 trials, P<0.05). The acetic acid extract was 20 times more potent than crude extract (EC50 = 1.4 g/l). The results showed that extracts from P. guajava leaves depress myocardial inotropism.
Resumo:
Plants used in traditional medicine are rich sources of hemolysins and cytolysins, which are potential bactericidal and anticancer drugs. The present study demonstrates for the first time the presence of a hemolysin in the leaves of Passiflora quadrangularis L. This hemolysin is heat stable, resistant to trypsin treatment, has the capacity to froth, and acts very rapidly. The hemolysin activity is dose-dependent, with a slope greater than 1 in a double-logarithmic plot. Polyethylene glycols of high molecular weight were able to reduce the rate of hemolysis, while liposomes containing cholesterol completely inhibited it. In contrast, liposomes containing phosphatidylcholine were ineffective. The Passiflora hemolysin markedly increased the conductance of planar lipid bilayers containing cholesterol but was ineffective in cholesterol-free bilayers. Successive extraction of the crude hemolysin with n-hexane, chloroform, ethyl acetate, and n-butanol resulted in a 10-fold purification, with the hemolytic activity being recovered in the n-butanol fraction. The data suggest that membrane cholesterol is the primary target for this hemolysin and that several hemolysin molecules form a large transmembrane water pore. The properties of the Passiflora hemolysin, such as its frothing ability, positive color reaction with vanillin, selective extraction with n-butanol, HPLC profile, cholesterol-dependent membrane susceptibility, formation of a stable complex with cholesterol, and rapid erythrocyte lysis kinetics indicate that it is probably a saponin.
Resumo:
We investigated the vascular responses and the blood pressure reducing effects of different fractions obtained from the methanol extract of Loranthus ferrugineus Roxb. (F. Loranthaceae). By means of solvent-solvent extraction, L. ferrugineus methanol extract (LFME) was successively fractionated with chloroform, ethyl acetate and n-butanol. The ability of these LFME fractions to relax vascular smooth muscle against phenylephrine (PE)- and KCl-induced contractions in isolated rat aortic rings was determined. In another set of experiments, LFME fractions were tested for blood pressure lowering activity in anesthetized adult male Sprague-Dawley rats (250-300 g, 14-18 weeks). The n-butanol fraction of LFME (NBF-LFME) produced a significant concentration-dependent inhibition of PE- and KCl-induced aortic ring contractions compared to other fractions. Moreover, NBF-LFME had a significantly higher relaxant effect against PE- than against high K+-induced contractions. In anesthetized Sprague-Dawley rats, NBF-LFME significantly lowered blood pressure in a dose-dependent manner and with a relatively longer duration of action compared to the other fractions. HPLC, UV and IR spectra suggested the presence of terpenoid constituents in both LFME and NBF-LFME. Accordingly, we conclude that NBF-LFME is the most potent fraction producing a concentration-dependent relaxation in vascular smooth muscle in vitro and a dose-dependent blood pressure lowering activity in vivo. The cardiovascular effects of NBF-LFME are most likely attributable to its terpenoid content.
Resumo:
Knowledge of the radiochemical purity of radiopharmaceuticals is mandatory and can be evaluated by several methods and techniques. Planar chromatography is the technique normally employed in nuclear medicine since it is simple, rapid and usually of low cost. There is no standard system for the chromatographic technique, but price, separation efficiency and short time for execution must be considered. We have studied an alternative system using common chromatographic stationary phase and alcohol or alcohol:chloroform mixtures as the mobile phase, using the lipophilic radiopharmaceutical [99mTc(MIBI)6]+ as a model. Whatman 1 modified phase paper and absolute ethanol, Whatman 1 paper and methanol:chloroform (25:75), Whatman 3MM paper and ethanol:chloroform (25:75), and the more expensive ITLC-SG and 1-propanol:chloroform (10:90) were suitable systems for the direct determination of radiochemical purity of [99mTc(MIBI)6]+ since impurities such as99mTc-reduced-hydrolyzed (RH),99mTcO4- and [99mTc(cysteine)2]-complex were completely separated from the radiopharmaceutical, which moved toward the front of chromatographic systems while impurities were retained at the origin. The time required for analysis was 4 to 15 min, which is appropriate for nuclear medicine routines.
Resumo:
A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media.
Resumo:
A method for determining aflatoxins B1 (AFB1), B2 (AFB2),G1 (AFG1) andG2 (AFG2) in maize with florisil clean up was optimised aiming at one-dimensional thin layer chromatography (TLC) analysis with visual and densitometric quantification. Aflatoxins were extracted with chloroform: water (30:1, v/v), purified through florisil cartridges, separated on TLC plate, detected and quantified by visual and densitometric analysis. The in-house method performance characteristics were determined by using spiked, naturally contaminated maize samples, and certified reference material. The mean recoveries for aflatoxins were 94.2, 81.9, 93.5 and 97.3% in the range of 1.0 to 242 µg/kg for AFB1, 0.3 to 85mg/kg for AFB2, 0.6 to 148mg/kg for AFG1 and 0.6 to 140mg/kg for AFG2, respectively. The correlation values between visual and densitometric analysis for spiked samples were higher than 0.99 for AFB1, AFB2, AFG1 and 0.98 for AFG2. The mean relative standard deviations (RSD) for spiked samples were 16.2, 20.6, 12.8 and 16.9% for AFB1, AFB2, AFG1 and AFG2, respectively. The RSD of the method for naturally contaminated sample (n = 5) was 16.8% for AFB1 and 27.2% for AFB2. The limits of detection of the method (LD) were 0.2, 0.1, 0.1 and 0.1mg/kg and the limits of quantification (LQ) were 1.0, 0.3, 0.6 and 0.6mg/kg for AFB1, AFB2, AFG1 and AFG2, respectively.
Resumo:
The objective of the present work was to evaluate the capacity of three isolates of Aspergillus flavus to produce aflatoxin under different culture conditions. This experiment was based on a 2³ factorial design, in which the independent variables were temperature (20-40 °C), incubation time (7-21 days), and the pH (2.0-6.0) in two different synthetic media. The optimal conditions were applied to non-aflatoxigenic isolates previously tested in coconut agar. Aflatoxin B1 was extracted directly from the synthetic cultures with chloroform. Thin Layer Chromatography (TLC) and Photographic Photometry were utilized to identify and quantify the compounds. Preliminary results showed that YES agar was an alternative medium for detecting the toxigenic potential of Aspergillus flavus in the following conditions: pH of 5.2, temperature of 25 °C, and incubation time of 11 days producing 206.05 ng.CFU-1 of aflatoxin B1. Of the 30 non-aflatoxigenic isolates, 12 presented a positive result in the optimal media and conditions tested.
Resumo:
This study aimed to evaluate the antioxidant potential and fatty acid profile of gabiroba (Campomanesia xanthocarpa Berg) seeds. In order to obtain the extract, the seeds were dried, crushed, and subjected to sequential extraction by maceration and percolation in a modified soxhlet extractor using solvent polarity gradient composed of hexane, chloroform, ethyl acetate, and alcohol, respectively. The extraction time was six hours. The ethanol extract showed the highest antioxidant potential, given by the EC50 value and the amount of total phenolic compounds. High amounts of unsaturated fatty acids were found in the oil studied, especially the oleic acid.