89 resultados para cbiA and cobS genes
Resumo:
The presence of iron uptake (irp-2, fyuA, sitA, fepC, iucA), adhesion (iha, lpfA O157/O141, lpfA O157/O154, efa, toxB) and invasion (inv, ial-related DNA sequences and assignment to the four main Escherichia coli phylogenetic groups (A, B1, B2 e D) were determined in 30 commensal E. coli strains isolated from healthy chickens and in 49 APEC strains isolated from chickens presenting clinical signs of septicemia (n=24) swollen head syndrome (n=14) and omphalitis (n=11) by PCR. None of the strains presented DNA sequences related to the inv, ial, efa, and toxB genes. DNA sequences related to lpfA O157/O154, iucA, fepC, and irp-2 genes were significantly found among pathogenic strains, where iucA gene was associated with septicemia and swollen head syndrome and fepC and irp-2 genes were associated with swollen head syndrome strains. Phylogenetic typing showed that commensal and omphalitis strains belonged mainly to phylogenetic Group A and swollen head syndrome to phylogenetic Group D. Septicemic strains were assigned in phylogenetic Groups A and D. These data could suggest that clonal lineage of septicemic APEC strains have a multiple ancestor origin; one from a pathogenic bacteria ancestor and other from a non-pathogenic ancestor that evolved by the acquisition of virulence related sequences through horizontal gene transfer. Swollen head syndrome may constitute a pathogenic clonal group. By the other side, omphalitis strains probably constitute a non-pathogenic clonal group, and could cause omphalitis as an opportunistic infection. The sharing of virulence related sequences by human pathogenic E. coli and APEC strains could indicate that APEC strains could be a source of virulence genes to human strains and could represent a zoonotic risk.
Resumo:
Bovine herpesvirus type 5 (BoHV-5) is a major cause of viral meningoencephalitis in cattle. The expression of different viral proteins has been associated with BoHV-5 neuropathogenesis. Among these, gI, gE and US9 have been considered essential for the production of neurological disease in infected animals. To evaluate the role of gI, gE and US9 in neurovirulence, a recombinant from which the respective genes were deleted (BoHV-5 gI-/gE-/US9-) was constructed and inoculated in rabbits of two age groups (four and eight weeks-old). When the recombinant virus was inoculated through the paranasal sinuses of four weeks-old rabbits, neurological disease was observed and death was the outcome in 4 out of 13 (30.7 %) animals, whereas clinical signs and death were observed in 11/13 (84.6%) of rabbits infected with the parental virus. In eight weeks-old rabbits, the BoHV-5 gI-/gE-/US9- did not induce clinically apparent disease and could not be reactivated after dexamethasone administration, whereas wild type BoHV-5 caused disease in 55.5% of the animals and was reactivated. These findings reveal that the simultaneous deletion of gI, gE and US9 genes did reduce but did not completely abolish the neurovirulence of BoHV-5 in rabbits, indicating that other viral genes may also play a role in the induction of neurological disease.
Resumo:
The current systems of breeding poultry, based on high population density, increase the risk of spreading pathogens, especially those causing respiratory diseases and those that have more than one host. Fowl Cholera (FC) is one such pathogen, and even though it represents one of several avian diseases that should be considered in the differential diagnosis of notifiable diseases that present with sudden death, the pathogenesis and virulence factors involved in FC are still poorly understood. The objective of this study was to investigate twelve genes related to virulence in 25 samples of Pasteurella multocida isolated from FC cases in the southern region of Brazil through the development of multiplex PCR protocols. The protocols developed were capable of detecting all of the proposed genes. The ompH, oma87, sodC, hgbA, hgbB, exBD-tonB and nanB genes were present in 100% of the samples (25/25), the sodA and nanH genes were present in 96% (24/25), ptfA was present in 92% (23/25), and pfhA was present in 60% (15/25). Gene toxA was not identified in any of the samples studied (0/25). Five different genetic profiles were obtained, of which P1 (negative to toxA) was the most common. We concluded that the multiplex-PCR protocols could be useful tools for rapid and simultaneous detection of virulence genes. Despite the high frequency of the analyzed genes and the fact that all samples belonged to the same subspecies of P. multocida, five genetic profiles were observed, which should be confirmed in a study with a larger number of samples.
Resumo:
Salmonella spp. are considered the main agents of foodborne disease and Salmonella Enteritidis is one of the most frequently isolated serovars worldwide. The virulence of Salmonella spp. and their interaction with the host are complex processes involving virulence factors to overcome host defenses. The purpose of this study was to detect virulence genes in S. Enteritidis isolates from poultry in the South of Brazil. PCR-based assays were developed in order to detect nine genes (lpfA, agfA, sefA, invA, hilA, avrA, sopE, sivH and spvC) associated with the virulence in eighty-four isolates of S. Enteritidis isolated from poultry. The invA, hilA, sivH, sefA and avrA genes were present in 100% of the isolates; lpfA and sopE were present in 99%; agfA was present in 96%; and the spvC gene was present in 92%. It was possible to characterize the isolates with four different genetic profiles (P1, P2, P3 and P4), as it follows: P1, positive for all genes; P2, negative only for spvC; P3, negative for agfA; and P4, negative for lpfA, spvC and sopE. The most prevalent profile was P1, which was present in 88% of the isolates. Although all isolates belong to the same serovar, it was possible to observe variations in the presence of these virulence-associated genes between different isolates. The characterization of the mechanisms of virulence circulating in the population of Salmonella Enteritidis is important for a better understanding of its biology and pathogenicity. The frequency of these genes and the establishment of genetic profiles can be used to determine patterns of virulence. These patterns, associated with in vivo studies, may help develop tools to predict the ability of virulence of different strains.
Resumo:
Porcine group A rotavirus (PoRVA) is a major cause of neonatal diarrhea in suckling and recently weaned piglets worldwide. The involvement of non-group A rotavirus in cases of neonatal diarrhea in piglets are sporadic. In Brazil there are no reports of the porcine rotavirus group C (PoRVC) as etiologic agent of the diarrhea outbreaks in piglets. The aim of this study was to describe the identification of rotavirus group C in single and in mixed infection with rotavirus groups A and B in three neonatal diarrhea outbreaks in suckling (<21-day-old) piglets, with 70% to 80% and 20% to 25% of morbidity and lethality rates, respectively, in three pig herds located in the state of Santa Catarina, Brazil. The diagnosis of PoRV in the diarrheic fecal samples was performed using polyacrylamide gel electrophoresis (PAGE) to identify the presence of porcine rotavirus groups A, B (PoRVB), and C, and by RT-PCR (PoRVA and PoRVC) and semi-nested (SN)-PCR (PoRVB) to partially amplify the VP4 (VP8*)-VP7, NSP2, and VP6 genes of PoRVA, PoRVB, and PoRVC, respectively. One RT-PCR (PoRVA and PoRVC) and SN-PCR (PoRVB) product of each group of rotavirus of each diarrhea outbreak was submitted to nucleotide (nt) sequence analysis. Based on the PAGE technique, 4 (25%) and 1 (6.25%) of the 16 diarrheic fecal samples evaluated in the first outbreak presented PoRVA and PoRVC electropherotype, respectively, and 11 (68.75%) were negative. In the second outbreak, 3 (42.85%) of the 7 fecal samples evaluated presented PoRVA electropherotype, and in 3 (42.85%) and in 1 (14.3%) fecal samples were detected inconclusive and negative results, respectively. Three (30%) of the 10 fecal samples of the third outbreak presented PoRVC electropherotype; 5 (50%) and 2 (20%) samples showed negative and inconclusive results, respectively. Based on the RT-PCR and SN-PCR assays in the first neonatal diarrhea outbreak, PoRVC was detected in 13 (81.2%) of the 16 diarrheic fecal samples evaluated. PoRVC single infection was identified in 4 (25%) of these samples and mixed infections with PoRVA and PoRVB in 9 (56.2%) fecal samples. All of the seven diarrheic fecal samples evaluated from the second neonatal diarrhea outbreak were positive for PoRVC, whereas its mixed infection with other PoRV groups was detected in 4 (57.2%) samples. In the third outbreak, PoRVC in single infection was detected in all of the 10 diarrheic fecal samples analyzed. In the nt sequence analysis, the PoRVA strains of the first and second outbreaks demonstrated higher nt identity with G4P[6] and G9P[23] genotypes, respectively. The PoRVB strains (first and second outbreaks) and the PoRVC strains (first, second, and third outbreaks) showed higher nt identity and clustered in the phylogenetic tree with PoRVB and PoRVC strains that belong to the N4 and I1 genotypes, respectively. This is the first description in Brazil of the involvement of PoRVC in the etiology of diarrhea outbreaks in suckling piglets. The results of this study demonstrated that PoRVC, in both single and mixed infections, is an important enteropathogen involved in neonatal diarrhea outbreaks in piglets and that the use of more sensitive diagnostic techniques allows the identification of mixed infections involving two or even three groups of PoRV, which may be more common than previously reported.
Resumo:
Three egg-type stocks segregating dwarf (dw) and bantam (dwB) genes in female progeny were produced from the same 18 heterozygous (dwB/dw) sires used to inseminate dams of three different genotypes: normal (dw+), dwarf (dw) and bantam (dwB) dams. The heritability of 8-week body weight estimated from full-sibs of the same phenotype of progeny was 0.40, and that estimated from paternal half-sibs of the same phenotype (dwarf or bantam), and from the same genotype of dam was 0.38. Therefore, maternal and non-additive effects within genotypic classes of dam made little contribution to the genetic variance for 8-week body weight among their progeny. The interaction of sires (S) with genotypes (dw+, dw and dwB) of dam (G) was significant at the 5% level. This indicates that the rankings of the sires within each one of the three genotypes of dam were not the same, probably due to non-additive genetic variation among genotypes of dams. The evidence indicated that in general the genes from individual sires combined differently with each type of dam (G). Those genes which combined well with the genes from normal (dw+) dams combined poorly with both the genes from the dwarf (dw) and the genes from the bantam (dwB) dams. The interaction of sires (S) with phenotypes (dwarf and bantam) of progeny (P) was significant at the 10% level. The results indicated a probable gene x genotype interaction for 8-week weight between genes at the dwarf locus (dw and dwB) and the background genotype (single and/or polygenes). The correlation among paternal half-sibs was influenced more by the S x G than by the S x P interaction, but the effects tended to be cumulative
Resumo:
Six hundred million people are at risk of infection by Schistosoma mansoni. MHC haplotypes have been reported to segregate with susceptibility to schistosomiasis in murine models. In humans, a major gene related to susceptibility/resistance to infection by S. mansoni (SM1) and displaying the mean fecal egg count as phenotype was detected by segregation analysis. This gene displayed a codominant mode of inheritance with an estimated frequency of 0.20-0.25 for the deleterious allele and accounted for more than 50% of the variance of infection levels. To determine if the SM1 gene segregates with the human MHC chromosomal region, we performed a linkage study by the lod score method. We typed for HLA-A, B, C, DR and DQ antigens in 11 informative families from an endemic area for schistosomiasis in Bahia, Brazil, by the microlymphocytotoxicity technique. HLA-DR typing by the polymerase chain reaction with sequence-specific primers (PCR-SSP) and HLA-DQ were confirmed by PCR-sequence-specific oligonucleotide probes (PCR-SSOP). The lod scores for the different q values obtained clearly indicate that there is no physical linkage between HLA and SM1 genes. Thus, susceptibility or resistance to schistosomiasis, as defined by mean fecal egg count, is not primarily dependent on the host's HLA profile. However, if the HLA molecule plays an important role in specific immune responses to S. mansoni, this may involve the development of the different clinical aspects of the disease such as granuloma formation and development of hepatosplenomegaly.
Resumo:
Squamous cell carcinoma of the cervix (SCCC) is one of the leading causes of death in developing countries. Infection with high-risk human papillomavirus (HPV) is the major risk factor to develop malignant lesions in the cervix. Polymorphisms of the MHC and p53 genes seem to influence the outcome of HPV infection and progression to SCCC, although controversial data have been reported. MHC are highly polymorphic genes that encode molecules involved in antigen presentation, playing a key role in immune regulation, while p53 is a tumor suppressor gene that regulates cell proliferation. The HPV E6 protein from high-risk types binds p53 and mediates its degradation by the ubiquitin pathway. The role of these polymorphisms in genetic susceptibility to HPV infection and to SCCC remains under investigation.
Evaluation of radioinduced damage and repair capacity in blood lymphocytes of breast cancer patients
Resumo:
Genetic damage caused by ionizing radiation and repair capacity of blood lymphocytes from 3 breast cancer patients and 3 healthy donors were investigated using the comet assay. The comets were analyzed by two parameters: comet tail length and visual classification. Blood samples from the donors were irradiated in vitro with a 60Co source at a dose rate of 0.722 Gy/min, with a dose range of 0.2 to 4.0 Gy and analyzed immediately after the procedure and 3 and 24 h later. The basal level of damage and the radioinduced damage were higher in lymphocytes from breast cancer patients than in lymphocytes from healthy donors. The radioinduced damage showed that the two groups had a similar response when analyzed immediately after the irradiations. Therefore, while the healthy donors presented a considerable reduction of damage after 3 h, the patients had a higher residual damage even 24 h after exposure. The repair capacity of blood lymphocytes from the patients was slower than that of lymphocytes from healthy donors. The possible influence of age, disease stage and mutations in the BRCA1 and BRCA2 genes are discussed. Both parameters adopted proved to be sensitive and reproducible: the dose-response curves for DNA migration can be used not only for the analysis of cellular response but also for monitoring therapeutic interventions. Lymphocytes from the breast cancer patients presented an initial radiosensitivity similar to that of healthy subjects but a deficient repair mechanism made them more vulnerable to the genotoxic action of ionizing radiation. However, since lymphocytes from only 3 patients and 3 normal subjects were analyzed in the present paper, additional donors will be necessary for a more accurate evaluation.
Resumo:
We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.
Resumo:
Azospirillum amazonense revealed genomic organization patterns of the nitrogen fixation genes similar to those of the distantly related species A. brasilense. Our work suggests that A. brasilense nifHDK, nifENX, fixABC operons and nifA and glnB genes may be structurally homologous to the counterpart genes of A. amazonense. This is the first analysis revealing homology between A. brasilense nif genes and the A. amazonense genome. Sequence analysis of PCR amplification products revealed similarities between the amino acid sequences of the highly conserved nifD and glnB genes of A. amazonense and related genes of A. brasilense and other bacteria. However, the A. amazonense non-coding regions (the upstream activator sequence region and the region between the nifH and nifD genes) differed from related regions of A. brasilense even in nitrogenase structural genes which are highly conserved among diazotrophic bacteria. The feasibility of the 16S ribosomal RNA gene-based PCR system for specific detection of A. amazonense was shown. Our results indicate that the PCR primers for 16S rDNA defined in this article are highly specific to A. amazonense and can distinguish this species from A. brasilense.
Resumo:
A 40-kb DNA region containing the major cluster of nif genes has been isolated from the Azospirillum brasilense Sp7 genome. In this region three nif operons have been identified: nifHDKorf1Y, nifENXorf3orf5fdxAnifQ and orf2nifUSVorf4. The operons containing nifENX and nifUSV genes are separated from the structural nifHDKorf1Y operon by about 5 kb and 10 kb, respectively. The present study shows the sequence analysis of the 6045-bp DNA region containing the nifENX genes. The deduced amino acid sequences from the open reading frames were compared to the nif gene products of other diazotrophic bacteria and indicate the presence of seven ORFs, all reading in the same direction as that of the nifHDKorf1Y operon. Consensus sigma54 and NifA-binding sites are present only in the promoter region upstream of the nifE gene. This promoter is activated by NifA protein and is approximately two-times less active than the nifH promoter, as indicated by the ß-galactosidase assays. This result suggests the differential expression of the nif genes and their respective products in Azospirillum.
Resumo:
Saccharomyces cerevisiae neutral trehalase (encoded by NTH1) is regulated by cAMP-dependent protein kinase (PKA) and by an endogenous modulator protein. A yeast strain with knockouts of CMK1 and CMK2 genes (cmk1cmk2) and its isogenic control (CMK1CMK2) were used to investigate the role of CaM kinase II in the in vitro activation of neutral trehalase during growth on glucose. In the exponential growth phase, cmk1cmk2 cells exhibited basal trehalase activity and an activation ratio by PKA very similar to that found in CMK1CMK2 cells. At diauxie, even though both cells presented comparable basal trehalase activities, cmk1cmk2 cells showed reduced activation by PKA and lower total trehalase activity when compared to CMK1CMK2 cells. To determine if CaM kinase II regulates NTH1 expression or is involved in post-translational modulation of neutral trehalase activity, NTH1 promoter activity was evaluated using an NTH1-lacZ reporter gene. Similar ß-galactosidase activities were found for CMK1CMK2 and cmk1cmk2 cells, ruling out the role of CaM kinase II in NTH1 expression. Thus, CaM kinase II should act in concert with PKA on the activation of the cryptic form of neutral trehalase. A model for trehalase regulation by CaM kinase II is proposed whereby the target protein for Ca2+/CaM-dependent kinase II phosphorylation is not the neutral trehalase itself. The possible identity of this target protein with the recently identified trehalase-associated protein YLR270Wp is discussed.
Resumo:
Two Azospirillum brasilense open reading frames (ORFs) exhibited homology with the two-component NtrY/NtrX regulatory system from Azorhizobium caulinodans. These A. brasilense ORFs, located downstream to the nifR3ntrBC operon, were isolated, sequenced and characterized. The present study suggests that ORF1 and ORF2 correspond to the A. brasilense ntrY and ntrX genes, respectively. The amino acid sequences of A. brasilense NtrY and NtrX proteins showed high similarity to sensor/kinase and regulatory proteins, respectively. Analysis of lacZ transcriptional fusions by the ß-galactosidase assay in Escherichia coli ntrC mutants showed that the NtrY/NtrX proteins failed to activate transcription of the nifA promoter of A. brasilense. The ntrYX operon complemented a nifR3ntrBC deletion mutant of A. brasilense for nitrate-dependent growth, suggesting a possible cross-talk between the NtrY/X and NtrB/C sensor/regulator pairs. Our data support the existence of another two-component regulatory system in A. brasilense, the NtrY/NtrX system, probably involved in the regulation of nitrate assimilation.
Resumo:
Measles virus is a highly contagious agent which causes a major health problem in developing countries. The viral genomic RNA is single-stranded, nonsegmented and of negative polarity. Many live attenuated vaccines for measles virus have been developed using either the prototype Edmonston strain or other locally isolated measles strains. Despite the diverse geographic origins of the vaccine viruses and the different attenuation methods used, there was remarkable sequence similarity of H, F and N genes among all vaccine strains. CAM-70 is a Japanese measles attenuated vaccine strain widely used in Brazilian children and produced by Bio-Manguinhos since 1982. Previous studies have characterized this vaccine biologically and genomically. Nevertheless, only the F, H and N genes have been sequenced. In the present study we have sequenced the remaining P, M and L genes (approximately 1.6, 1.4 and 6.5 kb, respectively) to complete the genomic characterization of CAM-70 and to assess the extent of genetic relationship between CAM-70 and other current vaccines. These genes were amplified using long-range or standard RT-PCR techniques, and the cDNA was cloned and automatically sequenced using the dideoxy chain-termination method. The sequence analysis comparing previously sequenced genotype A strains with the CAM-70 Bio-Manguinhos strain showed a low divergence among them. However, the CAM-70 strains (CAM-70 Bio-Manguinhos and a recently sequenced CAM-70 submaster seed strain) were assigned to a specific group by phylogenetic analysis using the neighbor-joining method. Information about our product at the genomic level is important for monitoring vaccination campaigns and for future studies of measles virus attenuation.