653 resultados para anais de congressos
Resumo:
The male of Eneoptera surinamensis (Orthoptera-Eneopteridae) is provided with 9 chromosomes, that is, with 3 pairs of autosomes and 3 sex chromosomes. Spermatogonia. - The autosomes of the spermatogonia are of the same size and U-shaped. One of the sex chromosomes approximately equalling the autosomes in size is telocentric, while the other two are much larger and V-shaped. One of the latter is smaller than the other. The sex chromosomes as showed in Figs. 1 and 2 are designated by X, Yl and Y2, X being the larger V, Yl the smaller one and Y2 the rod-shaped. Primary spermatocytes. - Before the growth period of the spermatocytes all the three sex chromosomes are visible in a state of strong heteropycnosis. X is remarkable in this stage in having two long arms well separated by a wide commissural segment. (Figs. 4, 5 and 6). During the growth period Y2 disappears, while X and Yl remain in a condensed form until metaphase. These may be separated from one another or united in the most varied and irregular manner. (Fig. 7 to 12). In the latter case the segments in contact seem to be always different so that we cannot recognize any homology of parts in the sense os genetics. At diplotene Y2 reappears together with the autosomal tetrads. X and Yl may again be seen as separate or united elements. (Figs. 13 and 14). At later diakinesis and metaphase the three sex chromosomes are always independent from each other, Y2 being typically rod-shaped, X and Yl V-shaped, X being a little larger than Yl. (Fig. 15 to 18). At metaphase the three condensed tetrads go to the equatorial plane, while the sex chromosomes occupy any position at both sides of this plane. In almost all figures which could be perfectly analysed X appeared at one side of the autosomal plate an Yl together with Y2 far apart at the other side. (Figs. 16 and 18). Only a few exception have been found. (Figs. 17 and 19). At anaphase X goes in precession to one pole, Yl and Y2 to the other (Figs. 20 and 21). As it is suggested by the few figures in which a localization of the sex chromosomes different from the normal has been observed, the possibility of other types of segregation of these elements cannot be entirely precluded. But, if this does happen, the resulting gametes should be inviable or give inviable zygotes. Early in anaphase autosomes and sex chromosomes divide longitudinally, being maintained united only by the kinetochore. (Figs. 20 and 21). At metaphase the three sex chromosomes seem to show no special repulsion against each other, X being found in the proximity of Yl or Y2 indifferently. At anaphase, however, the evidences in hand point to a stronger repulsion between X on the one side and both Ys on the other, so that in spite of the mutual repulsion of the latter they finish by going to the same pole. Secondary spermatocytes. - At telophase of the primary spermatocytes all the chromosomes enter into distension without disappearing of view. A nuclear membrane is formed around the chromosomes. All the chromosomes excepting Y2 which has two arms, are four-branched. (Fig. 22). Soon the chromosomes enter again into contraction giving rise to the secondary metaphase plate. Secondary spermatocytes provided as expected with four and five chromosomes are abundantly found. (Figs. 23 and 24). In the former all chromosomes are X-shaped while in the latter there is one which is V-shaped. This is the rod- shaped Y2. In the anaphase of the spermatocytes with four chromosomes all the chromosomes are V-shaped, one of them (X) being much larger than the others. In those with five there is one rod-shaped chromosome (Y2). (Fig. 25), Spermatids. Two classes of spermatids are produced, one with X and other with Yl and Y2. All the autosomes as well as Y2 soon enter into solution, X remaining visible for long time in one class and Yl in the other. (Figs. 26 and 27). Since both are very alike at this stage, one cannot distinguish the two classes of spermatids. Somatic chromosomes in the famale. - In the follicular cells of the ovary 8 chromosomes were found, two of which are much larger than the rest. (Figs. 29 and 30). These are considered as being sex chromosomes. CONCLUSION: Eneoptera surinamensis has a new type of sex-determining mechanism, the male being X Yl Y2 and the female XX. The sex chromosomes segregate without entering into contact at metaphase or forming group. After a review of the other known cases of complex sex chromosome mechanism the author held that Eneoptera is the unique representative of a true determinate segregation of sex chromosomes. Y2 behaving as sex chromosome and as autosome is considered as representing an intermediary state of the evolution of the sex chromosomes.
Resumo:
In order to test Piza's conclusions regarding the dicentricity of Hemipteran chromosomes, two species of bugs of the family Coreidae, namely, Anasa sp. and Leptoglossus stigma (Herbst), are studied in the present paper. a) Anasa sp. - The male of this species has 21 chromosomes, that is, 20 pairs of autosomes and a single sex chromosome. The latter divides equationally in the first division of the spermatocytes and passes undivided to one cell in the second division. In this it moves with its longer axis parallelly to the spindle axis and shows fibrillar connections with both poles. Special attention was paid to the behavior of the chromosomes in the anaphase of the spermatogonia. As it was previously stated (Piza 1946 and 1946a) with regard to other species, the chromosomes are here attached to the spindle by both ends and begin to move toward the poles strongly curved to them. No intercalary fibers could be detected although their existente may not be denied by theoretical reasons developed in another paper (Piza 1946). Mitoses in somatic tissues of the embryo were equally studied. Careful examination of anaphase chromosomes in a great number of cells showed that the chromosomes behave exactly as in the spermatogonia, being equally attached to the spindle by the extremities alone and moving with their ends looking to the pole. A weak median constriction sometimes replaced by a slightly clearer space was observed in prometaphase and even in metaphase chromosomes of the spermatogonia as well as the somatic cells, having already been referred to in the case of Diactor bilineatus. (Piza 1945). Hemipteran chromosomes being considered as iso-chromosomes originated by a longitudinal spliting of the monocentric chromosomes resulting from the second division of the spermatocytes, the median aspect just mentioned may be regarded as the point of union of the separated halves. (See origin of dicentricity in Piza 1946). b) Leptoglossus stigma - This species has spermatogonia provided with 20 pairs of autosomes and one sex chromosome whose behavior differs in nothing from what was stated in regard of the preceding species. In the primary spermatocytes nothing meriting special mention was observed. Orientation, connection with the poles and movements of the sex chromosome in the secondary spermatocytes confirm the views already developed.
Resumo:
1) Um estudo sobre o modo de crescimento de alones tetraplóides de mandioca Vassourinha Paulista, obtido experimentalmente por meio da colquicina, foi feito em comparação ao crescimento de clones diplóides da mesma variedade. Três outros clones da mandiosa amargosa foram também incluidos na análise para comparação. As observações foram feitas nas hastes da primeira ramificação de cada planta e podem ser resumidas como segue: (Quadros n.°s 1 e 2). a) comprimento: Dos 6 clones tetraplóides analisados, 5 (n.°s 1, 3, 6, 5 e 7) tiveram um comprimento bem menor que o dos clones controles diplóides, mostrando assim serem plantas menores. Um único clone tetraplóide (n.° 15) teve um comprimento menor, porém com a média não estatisticamente diferente da média do clone diplóide. b) peso: Os seis clones tetraplóides formaram dois grupos, com relação ao peso das hastes: um grupo de 3 clones (n.°s 1, 3 e 6) com o peso médio diferente do peso médio dos controles e um grupo de 3 clones (n.°s 5, 7 e 15) com peso médio não diferindo dos controles. Estes resultados estão confirmados pelo valor do índice pêso/n.° de folhas. c) n.° de folhas: O número de folhas por unidade de comprimento foi praticamente o mesmo para os clones diplóides e tetraplóides, conforme se pode verificar pelos valores do índice comprimento/n.° de folhas. Pode-se concluir que os clones tetraplóides têm um hábito de crescimento diferente daquele dos clones diplóides; as plantas tetraplóides são menores que as diplóides e, entre os clones tetraplóides, houve também diferença, alguns clones tendo plantas mais finas que outros. As estacas da variedade Vassourinha Paulista, de onde partimos para a obtenção das formas poliplóides, não foram obtidas de uma única planta e assim não podemos garantir se a diferença verificada entre os clones tetraplóides seja devida a clones iniciais diferentes ou se produzida ainda pela colquicina. 2) A produção de raizes e ramas numa experiência de um ciclo vegetativo, em blocos ao acaso e cem 3 repetições, foi analisada e mostrou que a produção dos clones diplóides é maior que aquela dos clones tetraplóides (Quadro n.° 10). A produção dos clones tetraplóides não foi uniforme. Eles formaram uma seqüência de produção e pelo menos um clone, o de n.° 6, ficou significativamente fora do conjunto, quando a sua média foi comparada à média de raiz e rama obtidas do total de clones tetraplóides. Este clone foi o único tetraplóide do grupo de 3 com estacas mais finas, indicados na análise de crescimento, que entrou na experiência; êle confirma assim aquela separação. O índice rama/raiz foi menor para os clones diplóides que para os tetraplóides, indicando que a produção de raiz em relação à rama é menor nos clones tetraplóides, no primeiro ciclo, provavelmente devido ao retardamento de crescimento nos primeiros meses de vegetação, pois as plantas tetraplóides cresceram mais vagarosamente que as plantas diplóides. 3) Uma experiência com 2 ciclos vegetativos e 3 repetições, mostrou que o clone tetraplóide n.° 6 (Quadro n.° 20) é de fato diferente dos demais, tendo plantas muito pequenas e produção muito pequena no campo. Esta experiência mostrou também que o clone n.° 2, que foi o tetraplóide mais produtivo na experiência com um ciclo vegetativo, parece formar um outro grupo tetraplóide com relação a produção de raizes e ramas. Esta experiência de dois ciclos foi realizada com um espaçamento bastante grande, de modo a eliminar toda possível competição entre plantas; os valores médios de produção por planta, contidos no quadro n.° 20, servem para identificar um clone do outro mas não representam produção comercial. Com 2 ciclos vegetativos o índice rama/raiz torna-se igual para todos os clones, mostrando que, após o primeiro ciclo, a produção de raiz em relação à rama torna-se idêntica para todos os clones. A correlação positiva entre produção de rama e raiz é significante e grande, tanto com um como com 2 ciclos vegetativos. 4) Mais uma experiência com um ciclo vegetativo, feita sistematicamente e com os clones n.° 8 (controle) e clones tetraplóides n.°s 2 e 6, confirmou os resultados anteriores, isto é, que a produção por planta dos clones tetraplóides é menor que a produção dos clones diplóides e que existe diferença entre os clones tetraplóides obtidos (quadro n.° 26). O aproveitamento comercial dos melhores clones tetraplóides só poderá ser avaliado depois da realização de experiências de espaçamento, pois é possível que, com um maior número de plantas, possa se obter a mesma ou melhor produção que os clones diplóides, numa mesma área. O clone tetraplóide n.° 6 não suporta as condições de campo (Fig. 32) e é possível que, pelo pequeno tamanho de suas plantas, seja útil para condições hortícolas, uma questão já discutida em outra publicação (6). 5) Uma análise de estacas para plantação, medindo 20 cms. cada uma, mostrou que há diferença de peso entre estacas dos clones tetraplóides. O clone n.° 6 teve um valor médio menor e diferindo estatisticamente dos demais clones tetraplóides, confirmando assim outros resultados anteriores. 6) Um estudo detalhado sobre a percentagem de amido dos diferentes clones mostrou que os tetraplóides não diferem dos diplóides quanto ao teor amido e que eles não são também diferentes de 3 outros clones de mandioca amargosa incluidos na análise para comparação.
Resumo:
The main facts presented in this paper may be summarized as follows: 1) Corizus (Liorhyssus) hyalinus (Fabr.) has primary spermatocytes provided with 6 autosomal tetrads, one pair of microchromosomes and one sex chromosome. 2) The two microchromosomes present in this species sometimes appear at the primary metaphase as an unequal pair of minute elements. In the secondary spermatocytes the unique microchromosome present may be in the limit of visibility or entirely invisible. This invisibility may be partly due to a loss of colourability. 3) The sex chromosome divides transversely in the first division of the spermatocyte, passing undivided to one pole in the second one. In the latter it becomes fusiform in the beginning of anaphase revealing in this manner its dicentricity. In late anaphase it finishes by passing to one pole leaving in the other pole one of its kinetochores sometimes accompanied by a chromosomal fragment. 4) All the chromosomes divide transversely in both divisions, a diagram being enclosed to elucidate the question. 5) Spermatogonial chromosomes are provided with one kinetochore at each end, being curved toward the poles since the most beginning anaphase. 6) The following hypothesis is presented as an essay to explain the origin of microchromosomes: Since microchromosomes parallel sex chromosomes in most respects, as for instances in heteropycnosis and pairing modus, it seems highly probable that they originate from sex chromosomes. One may suppose that the ancestral form of a given species had a sex chromosome which used to lose a small centric fragment when it divided during meiosis. This fragment might well be at first an unstable one. Later, to compensate the effects of such a deficiency a mechanism arose through evolution which produced two useful results : a) the establishment of the fragment as a permanent structure of the cell nucleus and b) the acquirement by the sex chromosome of the faculty of passing to one pole without losing any of its ends.
Resumo:
Studying the spermatogenesis of Leptysma sp. and Leptysma dorsalis, the writer was able to observe primary spermatocytes in anaphase with the heterochromosome in precession, synchronism or succession, confirming in this way what was observed by Prof. Piza in several other species of Orthoptera.
Resumo:
Cephalocoema borellii (Giglio-Tos) has 19 chromosomes, that is 9 pairs of autosomes and a single heterochromosome, the latter having been observed either in succession or in synchronism as was the case of the two other species studied by Prof. PIZA, namely Cephalocoema zilkari Piza and Tetanorhynchus mendesi Piza. (= Cephalocoema sica Serv.).
Resumo:
1) O caráter presença de espinhos nos frutos da mamoneira é determinado por um par de fatores dominantes SS, sendo a forma recessiva ss, inerme. A interação alélica nao é bem intermediária, havendo uma predominância do fator S. Êste resultado foi anteriormente constatado por HARLAND (7), PEAT (8), DOMINGO (2), GURGEL (4) e FERNANDES (3). 2) A constatação da segregação 1 SS : 2 Ss : 1 ss foi feita após extensivas contagens de espinhos, tanto na forma paternal, como também no Fl, F2 e "back-cross". Por essas contagens foi verificado que existem variedades com números diferentes de espinhos, podendo-se distinguir dois tipos: variedades que têm muitos espinhos, com uma média aproximada de 170 espinhos por fruto e variedades que têm um número médio de espinhos, com uma média aproximada de 113 espinhos por fruto. 3) Embora a segregação dos fatores S e s seja monofatorial, todavia foi constadada por uma análise estatística detalhada, a presença de gens modificadores agindo na geração F2, introduzidos pelos tipos paternais. Assim, o segregante SS no F2, tem mais espinhos do que o pai homozigoto da mesma constituição. 4) Foram encontrados dois novos gens cal e ca2, com interação não alélica do tipo de polimeria complementar duplo-recessiva, dando no F2 uma segregação de 15 com espinhos uniformes : 1 com espinho careca, no "back-cross" uma segregação de 3 com espinhos uniformes : 1 com espinho careca. Estes gens determinaram, nos frutos com espinhos, a formação de zonas sem espinhos, ou como denominamos, "carecas". Estes novos fatores foram encontrados numa única variedade, de n.° 51, conhecida por laciniada, em virtude da for- ma especial de suas fôlhas. Esta variedade é de côr verde, apresenta cera na haste e possui numerosos cachos, porém pequenos. Ê tida como planta ornamental e foi originalmente importada de Erfurt, Alemanha. 5) Mesmo nas variedades inermes foi constatada a presença dos gens Cal e Ca2, para distribuição uniforme de espinhos, embora nas ditas variedades não se possa identificar a sua presença, em virtude do gen s ser epistático recessivo sobre Cal e Ca2. 6) Uma vez que os fatores S e CalCa2 sao independentes, isto é, possivelmente situados em cromosômios diferentes, fazendo-se o cruzamento de variedades com espinho careca x variedades sem espinho, obtem-se o PI com número de espinhos intermediário e distribuição uniforme. No F2 obtém-se a segregação de 45 com espinho uniforme : 3 com espinho careca : 16 sem espinho e no "back-cross" a segregação de 3 com espinho uniforme : 1 com espinho careca : 4 sem espinho.
Resumo:
The present work is destinated to prove that the castes : workers and queens, in Melipona bees are due to genetic factors and not to differences in food. 2) Material used: Hives of Melipona quadri-fasciata anthidioides (Lep. 1836), M. schenki schenki (Gribodo, 1893), M. fasciata rufiventris (Lep. 1836), M. quadri-fasciata vicina (Lep. 1836), M. marginata marginata (Lep. 1836), Apis mellifera (L. 1758). 3) It should be pointed out that in Melipona bees there are no royal cells for the queens, but all the cells are of the same size independently of being destinated for workers, queens or drones. The numerous queens which are born are killed soon after emerging from their cells. 4) Changes of feeding in quality and in quantity caused no variation of castes. The only variable factor is the size, which becomes bigger when the bee is well nourished. 5) The offsprings of 5 hives were examined : 3 of M. quadri-fasciata anthidioides (n.o 1, n.o 2 and n.o 3), 1 of M. quadri-fasciata vicina (n.o 4) and 1 of M. marginata marginata (n.o 5). Combs of about 40 cells were taken into laboratory and the type of bee registered immediately after emerging. The results of the counts were: BOX COMB WORKER QUEEN PERCENTAGE Σ X2 to 12,5% Nº 1 1th 69 8 10,4% 0, 3139 " 1 2nd 144 18 11,1% 0, 2856 " 2 1th 52 8 13,3% 0, 0384 " 3 1th 45 10 18,2% 1, 6736 " 4 1th 56 4 6,7% 1, 8686 " 4 2nd 29 4 12,1% 0,00432 Σ X2 to 25% " 5 1th 34 14 29,2% 0,44444 "5 2nd 83 27 24,5% 0, 0121 In the 4 first boxes there is a percentage of 11,63% queens and in the last there is a percentage of 25,95%. 6) These percentages are very near two genetical ratios: 12,5% or 7:1, and 25% or 3:1, which correspond to a trifactorial and a bifactorial back-cross. Carrying out a X² test no significant deviations were found ( X² to 12,5% and to 25% and table 1 to 4). 7) We suppose that the formula for the queen in the first case (11,65%) is: AaBbCc. Since the Melipona bees are arrhenotokous hymenopteres, the drones are haploid and may have any one of the following eight formulas, corresponding to the gonic segregation of the queem : ABC, ABc, Abc, Abc, AbC, aBC, aBc, abC, abc. Anyone combination of these males with the queen will give a segregation of 7 workers to 1 queen, since there is always only one triple heterozygote among the eight possible segregates (table 5). 8) In order to explain the second case, it is suffient to assume that in this species there are only two pairs of factors, the queen being the double heterozygote : AaBb, while the drones may have any one of the following constitutions: AB, Ab, aB and ab. Workers are again all diploids which are homozygous for one or both factors, for instance: AABB, AABb, AaBB, aaBb, AAbb, etc. (table 6). 9) It is suggested that the genus Melipona is an intermediary type between the solitary bees, where all females are fertile independently of their feeding, and the genera Apis and Trigona, where without special feeding all females are born sterile, while only specially fed females develop into fertile queens. 10) No speculations are put forward with regards to the evolutionary mechanism which may have been responsible for the development of the genetical determination of castes in Melipona, since it seems advisable point to extend the studies to other insects with complicated caste systems.
Resumo:
O A., pretende facilitar aos práticos a composição de suas próprias fórmulas de ração com os alimentos disponíveis no momento; baseando-se nos conhecimentos e métodos já existentes sobre o assunto, simplifica-os, reduzindo-os ao exame de uma tabela que apresenta, conjuntamente com regras simples e práticas. Os cálculos sáo baseados na composição bruta dos alimentos e se limitam a adição e subtração do teor em proteina de cada ingradiente duma ração cujo total seja 100. Outras sugestões práticas são apresentadas.
Resumo:
In this paper the author describes a very interesting case of union of two homologous chromosomes of the scorpion Tityus bahiensis just by the opposite extremities. The two normal pairs of chromosomes behave as ordinarily, the members of each pair showing at times a slight disturbance in their regular parallelism. The complex chromosome, on the contrary, behaves itself as if it were devoid of kinetochores, that is, it does not orient like normal chromosomes nor reveal any kind of active movement. The fusion of the chromosomes has resulted from terminal breakage at the opposite ends, the correspondig fragments having been found unpaired in a cell in which two pairs of chromosomes were present. Consequently, the compound chromosome, like the normal ones, is provided with a kinetochore at each one of the free ends. Being thus a centric chromosome its behavior, or more exactly, its kinetic inactivity may be compared with that of the monovalents found elsewhere in meioses. It is due o the failure of a partner. The fusion of two homologous chromosomes has transformed them into a new chromosomal unit in whose corresponding parts the ability of pairing was entirely abolished. This result is in full contradiction with the theory of a point-to point attraction between homologous chromosomes attributed to particular power of the genes, since, if genes really exist, being placed in their original loci, they would promote the union side by side of the members of the compound chromosome. If an attraction loci-to-loci should prevail the compound chromosome would be bent as in Fig. 8, C or form a ring similar to the loops observed in the inverted segment of sailvary chromosomes of Drosophila, as represented in the Fig. 8, D and this, in accordance with the order of the loci resulting from an union of corresponding or opposite ends of the fused chromosomes, as indicated in the Fig, 8 A and B. The evidence in hand points to a fusion by non homologous extremities. The expected rings, however, have never been found in metaphase plates. From this fact the author concludes that there is no point-to-point attraction between chromosomes, a conclusion in full agreement with the behavior of Hemipteran chromosomes which, in spite of geing composed of two equivalent halves do not bend in order to adjust the corresponding loci. (Cf. the papers on Hemiptera published by the author in this volume).